首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following the discovery of the Higgs boson with a mass of approximately 125 Ge V at the LHC, many studies have been performed from both the theoretical and experimental viewpoints to search for a new Higgs Boson that is lighter than 125 Ge V. We explore the possibility of constraining a lighter neutral scalar Higgs boson h_1 and a lighter pseudo-scalar Higgs boson a_1 in the Next-to-Minimal Supersymmetric Standard Model by restricting the next-to-lightest scalar Higgs boson h_2 to be the one observed at the LHC after applying the phenomenological constraints and those from experimental measurements. Such lighter particles are not yet completely excluded by the latest results of the search for a lighter Higgs boson in the diphoton decay channel from LHC data. Our results show that some new constraints on the Next-to-Minimal Supersymmetric Standard Model could be obtained for a lighter scalar Higgs boson at the LHC if such a search is performed by experimental collaborations and more data. The potentials of discovery for other interesting decay channels of such a lighter neutral scalar or pseudo-scalar particle are also discussed.  相似文献   

2.
We study an upper bound on masses of additional scalar bosons from the electroweak precision data and theoretical constraints such as perturbative unitarity and vacuum stability in the two-Higgs-doublet model taking account of recent Higgs boson search results. If the mass of the Standard-Model-like Higgs boson is rather heavy and is outside the allowed region by the electroweak precision data, such a discrepancy should be compensated by contributions from the additional scalar bosons. We show the upper bound on masses of the additional scalar bosons to be about 2 (1) TeV for the mass of the Standard-Model-like Higgs boson to be 240 (500) GeV.  相似文献   

3.
The radion is a scalar particle that occurs in brane world models and interacts with the trace of the energy–momentum tensor of the Standard Model (SM). The radion–SM fermion interaction Lagrangian differs from the Higgs boson–fermion interaction Lagrangian for off-shell fermions. It is shown that all additional, as compared to the Higgs boson, contributions to the amplitudes of radion production and decay processes involving off-shell fermions are canceled out for both massless and massive fermions. Thus, additional terms in the interaction Lagrangian do not change properties of these processes for the radion and the Higgs boson, except for the general normalization factors. This similarity is a consequence of gauge invariance for the processes with production of gauge bosons. When an additional scalar particle is produced, there are no apparent reasons for the above cancellation, as confirmed, for example, by the process with production of two scalar particles, which features an additional contribution of the radion in comparison with the Higgs boson.  相似文献   

4.
《Nuclear Physics B》1988,307(3):476-486
We construct a model generalizing the invisible axion model of Dine, Fischler and Srednicki to three scalar doublets and two scalar singlets. By imposing two U(1) symmetries rather than the single Peccei-Quinn symmetry of the DFS model, we arrive at a physical particle spectrum containing both a light axion and a massless Goldstone boson. The axion couplings are as usual suppressed by a large VEV, which is bounded below by SN1987a emission limits and above by cosmological arguments. The VEV in the Goldstone boson couplings is bounded below by SN1987a emission and subsequent conversion into gamma rays via the galactic magnetic field, but the cosmological upper bound cannot be applied to this massless boson.  相似文献   

5.
Assuming that leptons are composed of a heavy fermion and a heavy scalar boson and using Bethe-Salpeter equation, we conclude that in the non-relativistic limit the radius and , in particular, the anomalous magnetic moment of leptons can be sufficiently small provided that the interaction of the constituents is of vector type and that the fermion is much beavier than the scalar boson. Whereas the scalar type interaction can only give wavefunctions with large radius and anomalous magnetic moment.  相似文献   

6.
The scalar Higgs boson mass in a Technicolor model was obtained by Elias and Scadron with the analysis of an homogeneous Bethe–Salpeter equation (BSE), however it was performed before the most recent developments of walking gauge theories. It was not observed in their work that dynamically generated technifermion mass may vary according to the theory dynamics that forms the scalar bound state. This will be done in this work and we also call attention that their calculation must change to take into account the normalization condition of the BSE. We compute the width of the composite boson and show how the gauge group and fermion content of a technicolor theory can be inferred from the measurement of the mass and width of the scalar boson.  相似文献   

7.
8.
It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons.  相似文献   

9.
The propagator and the complete sets of in-and out-solutions of the wave equation, together with the Bogoliubov coefficients relating these solutions are obtained for the vector W-boson (with the gyromagnetic ratio g=2) in a constant electromagnetic field. When only the electric field is present, the Bogoliubov coefficients are independent of the boson polarization and are the same as for the scalar boson. For the collinear electric and magnetic fields, the Bogoliubov coefficients for states with the boson spin perpendicular to the field are again the same as in the scalar case. For the W ? spin parallel (antiparallel) to the magnetic field, the Bogoliubov coefficients and the one-loop contributions to the imaginary part of the Lagrange function are obtained from the corresponding expressions for the scalar case by the substitution m 2m 2+2eH (m 2m 2-2eH). For the gyromagnetic ratio g=2, the vector boson interaction with the constant electromagnetic field is described by the functions that can be expected by comparing the scalar and Dirac particle wave functions in the constant electromagnetic field.  相似文献   

10.
We study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC with \(\sqrt{s} = 500\) GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling \(g_\chi \) is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator \(H_2\). The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for \(g_\chi \) approaching the perturbative limit, benchmark points with the mediator \(H_2\) in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising.  相似文献   

11.
12.
Both electroweak precision measurements and simple supersymmetric extensions of the standard model prefer a mass of the Higgs boson less than the experimental lower limit (on a standard-model-like Higgs boson) of 114 GeV. We show that supersymmetric models with R parity violation and baryon-number violation have a significant range of parameter space in which the Higgs boson dominantly decays to six jets. These decays are much more weakly constrained by current CERN LEP analyses and would allow for a Higgs boson mass near that of the Z. In general, lighter scalar quark and other superpartner masses are allowed. The Higgs boson would potentially be discovered at hadron colliders via the appearance of new displaced vertices.  相似文献   

13.
Renormalizable theory of electroweak interactions without scalar particles can be constructed by the modifying the Standard Model. One should remove all terms with the scalar field from the Lagrangian in the unitary gauge. The resulting electroweak theory without the Higgs particle is on mass-shell renormalizable and unitary. Thus the experimental non-observation of the Higgs boson will not mean a problem for the concept of renormalizability in quantum field theory but will confirm the scalar free theory.  相似文献   

14.
We discuss the impact of the constraints from the measurements of the parameters of the observed 125 GeV Higgs boson and from the unconfirmed 750 GeV diphoton excess in the LHC experiments on the properties of a possible extra scalar boson predicted in various Standard Model extensions. We consider an SM extension based on a stabilized brane-world model, in which the effective low-energy Lagrangian for the scalar degrees of freedom turns out to be very general and, for different values of the model parameters, reproduces the scalar field Lagrangians of various SM extensions by a singlet scalar. It is shown that in the simplest variant of the model, where only the gravitational degrees of freedom propagate in the bulk, the 125 GeV scalar state can be consistently interpreted as a Higgs-dominated state for a rather wide range of the model parameters, whereas the production cross section of a heavier radion-dominated state with mass 750 GeV or more turns out to be too small in the allowed region of the model parameter space for producing the wouldbe diphoton excess.  相似文献   

15.
The Elementary Goldstone Higgs(EGH) model is a perturbative extension of the standard model(SM),which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson via gluon fusion at the LHC and find that the resonant contribution of the heavy scalar is very small and the SM-like triangle diagram contribution is strongly suppressed. The total production cross section mainly comes from the box diagram contribution and its value can be significantly enhanced with respect to the SM prediction.  相似文献   

16.
A new soliton solution for the asymmetric scalar field theory is obtained. The soliton is interpreted as the boson condensate drop. The phase transition is examined.  相似文献   

17.
We suggest for the Higgs boson a Scalar Dominance Model (SDM) that interactions of the Higgs boson with hadrons proceed mainly via intermediate scalar mesons. Based on SDM the Higgs interpretation ξ (2.2) is discussed and BR(φ→γH) is calculated.The result seems to disfavor this assignment for ξ(2.2).  相似文献   

18.
The O(s) QCD correction to the hadronic decay of a scalar Higgs boson, for which contradicting results have been reported, is calculated. Our result is in agreement with that of Braaten and Leveille but disagrees with that of Janot. The possible origin of the discrepancy is discussed. The total hadronic decay rate and the differential rate to q g of a pseudoscalar Higgs boson are also presented.  相似文献   

19.
The effective Lagrangian with scalar and vector resonances that might result from new strong physics beyond the SM is formulated and studied. In particular, the scalar resonance representing the recently discovered 125-GeV boson is complemented with the SU(2) L+R triplet of hypothetical vector resonances. Motivated by experimental and theoretical considerations, the vector resonance is allowed to couple directly to the third quark generation only. The coupling is chiral-dependent and the interaction of the right top quark can differ from that of the right bottom quark. To estimate the applicability range of the effective Lagrangian the unitarity of the gauge boson scattering amplitudes is analyzed. The experimental fits and limits on the free parameters of the vector resonance triplet are investigated.  相似文献   

20.
We consider boson stars and black holes in scalar electrodynamics with a V-shaped scalar potential. The boson stars come in two types, having either ball-like or shell-like charge density. We analyze the properties of these solutions and determine their domains of existence. When mass and charge become equal, the space–times develop a throat. The shell-like solutions need not be globally regular, but may possess a horizon. The space–times then consist of a Schwarzschild-type black hole in the interior, surrounded by a shell of charged matter, and thus a Reissner–Nordström-type space–time in the exterior. These solutions violate black hole uniqueness. The mass of the black hole solutions is related to the mass of the regular shell-like solutions by a mass formula of the type first obtained within the isolated horizon framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号