首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
应用两相流理论,对单压吸收式制冷系统中气泡泵在绝热块状流工况下的工作特性进行理论分析,建立了气泡泵的理论模型,并对以饱和水为工质的气泡泵稳态工作运行进行了实验研究。分析结果表明,气泡泵提升管内的两相流流型与加热功率和沉浸比有关,随着加热功率或沉浸比的增加,提升管中两相流流型将发生改变,气泡泵提升效率先增大后减小,实验结果与理论分析曲线逐渐偏离。  相似文献   

2.
基于Einstein制冷循环设计了气泡泵实验装置,以氨水为工质,对给定工况下气泡泵的性能进行研究。对沉浸比和加热功率对气泡泵的提升性能的影响进行分析,并将实验值与理论模型进行比较。结果表明:气泡泵的液体输送特性与气泡泵提升管管径、沉浸比、加热功率有关;气泡泵的液体流量随着加热功率增大、沉浸比的增大而增大,提升管内径对液体流量的影响不明显。实验结果与理论模型分析结果相一致。  相似文献   

3.
通过自行设计的可视化气泡泵实验装置,以氨水工质为研究对象,针对不同实验工况条件下的气泡泵的性能进行了实验研究。实验结果表明:气泡泵的液体流量随着提升管管径,沉浸比和加热功率有关,并且随着沉浸比和加热功率的增加而增大;沉浸比的增大而增大;气泡泵的效率也与沉浸比和加热功率有密切的关系:气泡泵的效率随着沉浸比的增加而增加,随着加热功率的增加表现为减小的趋势。  相似文献   

4.
利用复叠八字气泡收集器,设计出一种新型气泡泵——导流式气泡泵,针对不同的加热功率、沉浸比以及气泡收集管径,对其进行了实验研究,并与传统气泡泵的性能进行了对比.实验结果表明,导流式气泡泵启动功率为300W,低于传统气泡泵;当沉浸比分别为0.3,0.35及0.4时,液体提升量均高于传统气泡泵;气泡收集管径对新型导流式气泡泵...  相似文献   

5.
单压吸收式制冷是一种可以利用太阳能等低品位能源驱动的制冷循环,而气泡泵是该制冷系统中的最主要耗能部件,因此对气泡泵的研究尤其重要。冷态模拟实验可以避免热态实验中出现的实验过程不稳定等缺点,产生的气泡更加均匀,获得的实验数据更加准确。实验结果表明输气量和沉浸比对气泡泵性能影响较大。  相似文献   

6.
搭建气泡输入式冷态试验系统,以常压饱和水为工质,均匀输入空气形成连续气泡用于模拟气泡泵运行系统,对气泡泵的性能进行研究。其实验结果与在加热状态下气泡泵的性能相比较,综合分析气体输入量(可转换成加热量)、沉浸比等对气泡泵性能的影响,提出产生此结果的原因。  相似文献   

7.
本文搭建了带溶液泵的循环实验装置,并进行了提升管直径分别为6 mm、8 mm和12 mm的气泡泵用于输送12.5%、15%和17.5%三个质量浓度R134a-DMF溶液的性能实验。结果表明,在相同的R134a浓度下,三种管径气泡泵的气相流量随着输入功率的增加均呈大致线性增加趋势,提升效率随着气相流量的增加均明显减少,发生温度均随着输入功率的增加而线性增加,而输入功率对系统压力的影响不大。在相同的R134a浓度和相同气相流量下,8 mm管径气泡泵的提升效率最高,6 mm管径气泡泵的提升效率最低,R134a的浓度对提升效率的影响不明显。随着提升管直径的增大,气泡泵的启动加热量在所有R134a浓度下均增加,R134a的浓度对发生温度的影响不明显,但对系统压力的影响很大。这些实验结果对扩散吸收制冷系统的气泡泵设计具有重要参考价值。  相似文献   

8.
单压吸收制冷能够使用低品位热源,是一种有利环保和能源有效利用的技术,具有十分广阔的应用前景。气泡泵是实现单压吸收制冷系统正常运转的关键部件,为单压吸收制冷系统的循环提供动力,因此研究气泡泵的性能对整个系统的运行具有重要的意义。文中介绍了气泡泵的工作原理以及流动模型,概括了近年来关于气泡泵的实验研究现状以及影响气泡泵提升性能的因素,并对气泡泵未来的研究进行了展望。  相似文献   

9.
实验分析研究了溴化锂溶液驱动的气泡泵。实验中保持12 mm管径、960W加热功率、1244 mm提升高度不变,改变溴化锂溶液浓度、浸没高度和添加剂质量分数来测试分析气泡泵性能。浸没高度为378~528 mm。溴化锂溶液浓度为45.5%~59.5%。选取异辛醇作为添加剂,添加的质量分数为(40~70)×10-6。实验结果表明,溴化锂溶液浓度对气泡泵的工作性能影响很大而异辛醇影响很小。  相似文献   

10.
文中介绍了单压吸收式制冷系统中驱动装置的主要类型,并分别阐述了几种主要驱动装置的研究进展。以导流式气泡泵为例,对其性能进行了简单的实验研究。总结了三种驱动装置之间的联系,对目前驱动装置研究所面临的部分问题进行了分析,并提出了展望。  相似文献   

11.
This paper presents a system of regenerative heating incorporating an absorption heat pump in a Rankine steam cycle which can improve cycle efficiency. A simulation has been performed to estimate the Rankine cycle efficiency in the proposed Absorption Heat Pump Regeneration (AHPRG) heating system using the working pair R213-DMETEG. The results show that the cycle efficiency can be improved considerably without reducing the work output by the incorporation of AHPRG for low-temperature heating of steam condensate. Further, the temperature of the heat-pump evaporator which absorbs the heat rejected at the steam condenser plays a predominant role in the cycle efficiency.  相似文献   

12.
无泵吸收制冷系统气泡泵的性能分析   总被引:2,自引:2,他引:0  
根据两相流流型转换理论,推导出了气泡泵从弹状流向泡状流转变和从弹状流向块状流转变时液体流量、气体流量与管径的关系式;根据空气提升理论、能量平衡、质量平衡推导出了气泡泵的性能关系式。根据上述关系式,具体分析了爱因斯坦制冷循环工况下气泡泵的性能,分析结果表明,在弹状流下限、大的沉浸比时液体循环量较大。  相似文献   

13.
This study experimentally investigated the thermal performance of a two-phase closed-loop thermosyphon with a thermal resistance model for electronic cooling. The evaporator, rising tube, condenser, and falling tube, which are the four main devices, formed a closed-loop system with water as the working fluid. The experimental parameters were the evaporator surface type, fill ratio of working fluid, and input heating power. The results indicated that the evaporator and condenser thermal resistance decrease with increasing input heating power. The condenser thermal resistance clearly increased with increasing fill ratio. A groove-type evaporator surface with 0.2 mm height and 1 mm width had the best performance, decreasing the evaporator thermal resistance about 15.5% compared to a smooth surface. Correlations for evaporator and condenser thermal resistance were also developed, and their precisions, when compared with the experimental data, were about 9.6 and 11.6%, respectively. Because of the intermittent boiling mechanism at 47% fill ratio with input heating power from 60 to 80 W, the temperature showed obvious oscillations with the smooth evaporator surface.  相似文献   

14.
This paper deals with the performance analysis and optimization for irreversible heat pumps working on reversed Brayton cycle with constant-temperature heat reservoirs by taking exergetic efficiency as the optimization objective combining exergy concept with finite-time thermodynamics (FTT). Exergetic efficiency is defined as the ratio of rate of exergy output to rate of exergy input of the system. The irreversibilities considered in the system include heat resistance losses in the hot- and cold-side heat exchangers and non-isentropic losses in the compression and expansion processes. The analytical formulas of the heating load, coefficient of performance (COP) and exergetic efficiency for the heat pumps are derived. The results are compared with those obtained for the traditional heating load and coefficient of performance objectives. The influences of the pressure ratio of the compressor, the allocation of heat exchanger inventory, the temperature ratio of two reservoirs, the effectiveness of the hot- and cold-side heat exchangers and regenerator, the efficiencies of the compressor and expander, the ratio of hot-side heat reservoir temperature to ambient temperature, the total heat exchanger inventory, and the heat capacity rate of the working fluid on the exergetic efficiency of the heat pumps are analysed by numerical calculations. The results show that the exergetic efficiency optimization is an important and effective criterion for the evaluation of an irreversible heat pump working on reversed Brayton cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号