首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persistent spectral hole burning was studied in Eu3+ ions-doped Al2O3-SiO2 glass prepared by a sol-gel method. The gel synthesized by the hydrolysis of Si- and Al-alkoxides and EuCl3·6H2O was heated in air and hydrogen gas atmospheres. For the glass heated in air to contain OH bonds, the hole was formed by the photoinduced rearrangement of the OH bonds surrounding the Eu3+ ions, and was thermally refilled and erased above 200 K. On the other hand, the glass heated in hydrogen gas showed the hole spectrum above 200 K. It was found that the hole depth was independent of the temperature and was 7% of the total intensity at room temperature. The proposed mechanism was the electron transfer between the Eu3+ ions and the defect centers formed in glass matrix.  相似文献   

2.
We studied the persistent spectral hole-burning (PSHB) of the Eu3+-doped Al2O3-SiO2 glasses, prepared by a sol–gel process, exposed to femtosecond laser pulses. The spectral holes were burned in the excitation spectra of the 7F05D0 transition of Eu3+ ion. The depth and width of the burned holes were 15% and 2.5 cm–1 fwhm at 7 K, respectively. The burned hole is stable up to room temperature. Fluorescence line narrowing spectra showed that Eu3+ ions were located in two different sites.  相似文献   

3.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   

4.
Eu3+-doped boehmite nanofiber materials with different Eu3+ concentrations were synthesized without any surfactant, and followed by a series of characterizations. It was found that the boehmite nanofibers became coarser with the increase of Eu3+ concentration, which resulted in a gradual decrease of their specific surface areas. Moreover, the thermal stability of the boehmite nanofibers was studied by thermogravimetry–differential scanning calorimetry. All materials showed the phase transition from γ-Al2O3 to other forms. Yet the transition temperature was increased with the increase of Eu3+ concentration. The Eu3+-doped boehmite nanofibers with the maximum Eu3+ concentrations showed the best thermal stability. Photoluminescence spectra showed that the 2 mol% of doping concentration of Eu3+ ions in Eu3+:Al2O3 nanofiber was optimum.  相似文献   

5.
An increased solubility of Nd3+ in YAG has been achieved by means of expansion of its crystal lattice with Sc3+ ions substituting for Al3+ ions in the octahedral sites. A number of other scandium substituted rare earth aluminum garnets of general formula {R3}[Sc2](Al3)O12 have been prepared and results are compared with similar compounds in {R3}[Sc2](Fe3)O12 systems. It is shown that the expansion of the YAG lattice by octahedral substitution significantly increases the solubility of Nd3+ on dodecahedral sites. The results of substitution of Sc in other rare earth-aluminum systems appear to be consistent with results obtained in the yttrium-aluminum system and so ions bigger than Gd3+, such as Eu3+ and Sm3+, can form garnets {Eu3}[Sc2](Al3)O12 and {Sm3}[Sc2](Al3)O12.  相似文献   

6.
Results of studying the spectral and luminescent properties of Eu3+ ions upon homogeneous excitation of POCl3–SnCl4-UO2+ 2–Eu3+ and D2O–235UO2+ 2–Eu3+ solutions by -particles are presented. It was found that the radioluminescence intensity of Eu3+ ions in both solvents increases proportionally to the energy input by -particles. The yield of radioluminescence photons from europium ions in the POCl3–SnCl4–UO2+ 2–Eu3+ solutions is more than nine times as high as that in D2O–UO2+ 2–Eu3+. The radiation-chemical yields of excited 5 D 0 states of Eu3+ ions are 0.74 ± 0.07 and 0.18 ± 0.02 ions/100 eV in POCl3–SnCl4–UO2+ 2–Eu3+ and D2O–UO2+ 2–Eu3+ solutions, respectively.  相似文献   

7.
Spectral-luminescent characteristics of Sr2Y8(SiO4)6O2: Eu powder crystal phosphor with the apatite structure and high-intensity luminescence of Eu3+ ions have been studied. The charge state of europium in the samples has been characterized by means of X-ray L3-adsorption spectroscopy. It was established that Eu3+ forms two types of optical centers. Besides, luminescence of Eu2+ions was found. Reduction Eu3+→Eu2+ was considered, which may be due to vacancy formation in the 4f crystal lattice position and to negative charge transfer by this vacancy to two ions. Thus, in the silicate lattice there exist inhomogeneously distributed oxygen-deficient centers, which are responsible for nonradiative transfer of excitation energy to Eu3+ and Eu2+ ions. To study electron-vibrational interactions in the crystal phosphor samples, their IR and Raman spectra were examined. In the luminescence spectrum of Eu2+, a series of low-intensity bands caused by interaction of the 4f65d state of Eu2+ with silicate lattice vibrations was observed.  相似文献   

8.
Bismuth borate glasses containing phosphors and luminescent rare-earths are of interest for applications in light-emitting devices. Herein, the influence of CuO impurities on red-emitting Eu3+-doped bismuth borate glasses of the 25Bi2O3-15BaO-10Li2O-50B2O3 type was investigated by various spectroscopic methods. The glasses were prepared by the melt-quench technique and characterized by X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, UV/Vis optical absorption (OA), and photoluminescence (PL) spectroscopy including decay kinetics assessment. The XRD data confirmed the amorphous nature of the glasses whereas FT-IR spectra indicated the basic structural features of trigonal BO3 units and BO4 tetrahedra. The OA analysis showed that addition of CuO up to 0.5 mol% results in significant growth of the visible Cu2+ absorption band around 715 nm, with slight decrease in the optical band gap energies assessed through Tauc plots. A drastic PL quenching of Eu3+ ions emission was evidenced concurring with the detrimental effect of Cu2+. The assessment of the Eu3+ emission decay curves revealed significant lifetime decrease of the 5D0 emitting state with increasing CuO concentration. An analysis of quenching constants was finally performed comparing results from integrated PL data with the emission decay rates. It is argued that the bismuth borate glass system supports an effective Eu3+→Cu2+ energy transfer (more so than phosphates) in connection with a strong spectral overlap between Eu3+ emission and Cu2+ absorption.  相似文献   

9.
Multicomponent glasses from the SiO2–P2O5–K2O–MgO–CaO–CuO system acting as slow release fertilizers were synthesized by the melt-quenching technique. The influence of CuO and P2O5 addition on the structure of glasses was evaluated by FTIR, Raman, 31P, and 29Si MAS NMR spectroscopies. The studies showed that the Cu2+ ions displacing Ca2+ ions and Mg2+ ions in the structure of glass prefer to associate with the phosphorus Q1 species, forming the Q0 species with chemically stable POCu bonds. This is accompanied by the reduction of the degree of polymerization of the phospho-oxygen sub-network, with a simultaneous increased degree of polymerization of the silico-oxygen sub-network of the silicate–phosphate glasses.  相似文献   

10.
The glasses of the composition (40 ? x)PbO–(5 + x)Al2O3–54SiO2:1.0Yb2O3 (in mol%) with x ranging from 5 to 10 have been synthesized. The IR spectral studies of these glasses have indicated that there is a gradual transformation of Al3+ ions from tetrahedral to octahedral coordination with increase of Al2O3 content in the glass network. The optical absorption and luminescence spectra have exhibited bands originating from 2F7/2  2F5/2 and 2F5/2  2F7/2 transitions, respectively. From these spectra, the absorption and emission cross-sections and fluorescence lifetime of Yb3+ ions have been evaluated. Quantitative analysis of these data indicated a decreasing radiative trapping and increasing fluorescence lifetime of Yb3+ ions with increasing Al2O3 content. This may be explained by structural variations in the vicinity of Yb3+ ions due to variation in the concentration of Al2O3 in the glass network.  相似文献   

11.
This paper reports the detailed preparation process of Eu2+ activated Sr3Al2O6 by a sol-gel method in the reducing atmosphere. The effect of the calcining temperature on the microstructure, crystalline particle morphology and luminescence properties of Sr3Al2O6:Eu2+ is systematically discussed. X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and fluorescence spectrophotometer were employed to characterize the phosphor. The Sr3Al2O6:Eu2+ phosphor powders calcined at 1200 °C for 2 h possessed a Sr3Al2O6 single cubic phase. The Sr3Al2O6:Eu2+ crystallites showed flower-like morphology. The Sr3Al2O6:Eu2+ phosphor powders exhibited a red broad emission band with emission peak at 612 nm under 472 nm excitation. Especially the Sr3Al2O6:Eu2+ phosphor powders prepared at 1200 °C showed the strongest luminescence intensity, due to the pure phase and higher crystallinity of Sr3Al2O6.  相似文献   

12.
By heating the products isolated from an ethyl acetate medium, luminescent europium-containing compositions based on yttrium oxyfluorides and oxide have been synthesized. The concentration of Eu3+ ions in the compositions was from 0.10 to 10 at % of the yttrium content. It has been shown that the (EuхY1–х)nOn–1Fn + 2, (EuхY1–х)OF, (EuхY1–х)2O3, and (EuхY1–х)5O4F7 phases are formed during the synthesis. The luminescence of the compositions is related to the 5D07Fj electron transitions of Eu3+ ions. It depends on the synthesis conditions, the type of matrix, the position of the Eu3+ ions in the crystal lattice, the excitation wavelength, and other factors.  相似文献   

13.
Luminescence and energy transfer properties of Gd2Ti2O7: Eu and Eu2Ti2O7 are reported. Transfer between unperturbed (intrinsic) Eu3+ ions and perturbed (extrinsic) Eu3+ ions has been observed. At low temperatures the emission spectra of Eu2Ti2O7 are dominated by trap emission, due to direct energy transfer from the intrinsic Eu3+ ions to the extrinsic Eu3+ ions. Above 10 K energy migration among the Eu3+ ions to quenching centers occurs. The interaction between the Eu3+ ions is probably exchange in character. The nature of the extrinsic Eu3+ ions has been elucidated.  相似文献   

14.
A study of xNa2O·5Fe2O3·(95-x)B2O3 glasses(x = 10–35) by Mössbauer spectroscopy was carried out in order to elucidate the effect of non-bridging oxygen (NBO) on Mössbauer parameters for Fe3+ ions. From the change of the isomer shift and quadrupole splitting, it was found that the Fe3+ ions in these borate glasses constitute FeO4 tetrahedra and play a role of network former. These Mössbauer parameters reflect well the formation of NBO when N2O contents is larger than 20 mol%. From the measurements of absorption area at low temperature, the D values for Fe3+ ions in 10Na2O·5Fe2O3·85B2O3 and 35Na2O·5Fe2O3·60B2O3 glasses were determined to be 320 and 289 K, respectively. The decrease of D value from 320 to 289 K is ascribed to the NBO which was formed by the breaking of -B-O-B- bonds.  相似文献   

15.
In this work, Sr3Al2O6: Eu2+ (Eu3+), Dy3+ phosphors have been prepared by hydrothermal treatment and subsequently postannealing approach, using Sr(NO3)2, Al(NO3)3·9H2O, and CO(NH2)2 as starting materials. The as-obtained phosphors were characterized by means of XRPD, FESEM, and PL techniques. In addition, many reaction parameters were studied in detail, including the initial mole ratios, hydrothermal reaction temperature, calcination temperature and calcination atmosphere. Remarkably, two scientific merits exist herein: Sr3Al2O6: Eu2+ (Eu3+), Dy3+ phosphors can be selectively obtained in a reducing atmosphere (H2/Ar, 20%+80%) and in air, respectively; adding certain amount of sodium citrate can alter the shape and size of Sr3Al2O6: Eu2+ (Eu3+), Dy3+ phosphors in essence. Besides, the luminescent properties of Sr3Al2O6: Eu2+ (Eu3+), Dy3+ phosphors were studied by excitation spectra, emission spectra and decay curves.  相似文献   

16.
Ordered Occupation of Octahedra in Ba6La2Al1,5Fe2,5O15 Ba6La2Al1.5Fe2.5O15 was prepared and investigated by X-ray single crystal technique. It crystallizes in the space group C – P63mc; a = 11.814, c = 7.1003 Å; Z = 2. The M3+O6 octahedra are occupied exclusively by Fe3+ ions, the M3+O4 tetrahedra in contrast are statistically filled by Fe3+ and Al3+ ions. Ba6La2Al1.5Fe2.5O15 is a partially ordered mixed crystal of the pure iron and aluminium compounds.  相似文献   

17.
The sol-gel process was applied to the preparation of Sm2+ ion-doped silicate glasses, which show persistent spectral hole burning at room temperature. The gels synthesized by the hydrolysis of metal alkoxides and SmCl3·6H2O were heated in air at 500°C, were then reacted with H2 gas to form the Sm2+ ion. The Al2O3−SiO22 glasses are appropriate to reduce the Sm3+ ion with H2 gas and show intense photoluminescence of Sm2+ ion. Persistent spectra hole burning was observed in the excitation spectrum for the7F05D0 transition of the Sm2+ ion by the irradiation of DCM dye laser. The hole width and depth were ∼16 cm−1 and ∼10% of the total intensity, respectively, at 20°C.  相似文献   

18.
Eux(NH4)2‐2xTi3O7 nanoporous phosphor was prepared by ion exchange method. (NH4)2Ti3O7 nanotubes were employed as the host structure by treating H2Ti3O7 with NH4OH solution and the activator, Eu2+, was introduced into the host via ion exchange. This is an easy and feasible way to prepare a phosphor. The synthesized samples were characterized using TEM, XRD, N2 adsorption‐desorption isotherm, TPR, and fluorescence spectrophotometer. Experimental results showed that a portion of Eu2+ ions was oxidized into Eu3+ ions during ion exchange, resulting in the present phosphor with blue‐emitting and red‐emitting. Moreover, the tubular structure of Eux(NH4)2‐2xTi3O7 was distorted as Eu2+ was placed into the host structure. This distortion is attributed to the electrostatic interaction between Eu2+ and the electric field of the host structure.  相似文献   

19.
Borate glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (49.99-x)B2O3 + 25Li2O + 25LiF+xEu2O3 by varying the concentration of the rare earth ion in the order 0.01, 0.1, 1, 2 and 3 wt% and their structural, luminescence and thermal behavior have been reported. The XRD and FTIR spectra reveal the glass structure and the functional groups. The UV–VIS, luminescence spectra and lifetime of the Eu3+ ions were measured. The local site symmetry around the Eu3+ ions were evaluated through the luminescence intensity ratio (R) of the 5D0 → 7F2 to 5D0 → 7F1 transitions. Optical measurements have been carried out to explore the optical properties such as bonding parameters, Judd–Ofelt parameters, stimulated emission cross-section, transition probability, branching ratio, radiative lifetime, etc. The lifetime measurements of the 5D0 level as a function of the concentration of Eu3+ ion have been found and is comparable to other reported for Eu3+ doped borate, phosphate glasses and higher than that for the tellurite glasses. The thermal properties such as glass transition, crystallization and melting temperatures of the Eu3+ glasses were studied through the DSC traces in the temperature range of 30−1200 °C at a heating rate of 10 °C per minute. The change in optical properties with the variation of Eu3+ ion concentration have been discussed and compared with similar results.  相似文献   

20.
The spectroscopic properties of europium in aluminium codoped silica glasses produced by the sol-gel technique have been studied with respect to the dopant concentrations and the thermal processing applied to the samples. After thermal annealing at temperatures up to 950_°C the bright red fluorescence around 613 nm characteristic for the trivalent europium ions (Eu3 +) has been observed. The lifetime was measured to be 0.1–2.4 ms depending on dopant concentrations and thermal treatment. Subsequent CO2-laser processing in air (short time remelting) gave rise to a bright blue fluorescence consisting of two broad bands, lying around 450 and 490 nm, with their peak position depending on the ratio between the aluminium and europium concentrations. The fluorescence lifetimes were found to be shorter than 1 s. This blue fluorescence is attributed to the divalent europium ion (Eu2 +), leading to the conclusion that the CO2-laser processing of europium doped alumina-silica glasses resulted in the reduction of the trivalent to the divalent europium ion. Laser processing could therefore be a valid alternative to conventional thermal annealing for the generation of Eu2 + in alumina-silica glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号