首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
罗小东  饶云江  冉曾令 《光学学报》2007,27(8):1393-1396
在基于掺铒光纤-拉曼混合放大的可调光纤环形激光器的光纤布拉格光栅(FBG)传感系统结构基础上,提出了延长传感距离的新方法。该方法以环形掺铒光纤激光器作为光源,采用双波长拉曼放大的方法对信号进行低噪声的双向放大,系统中间的两段掺铒光纤再利用剩余的抽运功率产生自发辐射光和放大传感信号,使得整个系统能够在超长的传感距离上获得很高的信噪比。实验表明使用一只40 mW的掺铒光纤放大(EDFA)抽运源、一只170 mW的拉曼抽运源和一只2 W的拉曼抽运源,可以使整个系统的传感距离达到100km,并且传感系统的光纤布拉格光栅反射信号均能获得超过57 dB的优良信噪比,从而实现在超长距离上的光纤布拉格光栅传感。  相似文献   

2.
This work proposes a novel erbium-doped fiber ring laser as a sensing control center (CC) for long-haul fiber Bragg grating (FBG) sensor systems. The tunable erbium-doped fiber laser with signal averaging functionality not only provides intense and stable laser light, but also suppresses the effect of noise on the system performance. A sample 30/60 km FBG sensor array is connected to the fiber ring laser to demonstrate experimentally the feasibility and effectiveness of the laser as a CC. The experimental results indicate that the signal averaging operation inside the proposed setup increases the system signal-to-noise ratio (SNR).  相似文献   

3.
刘川  饶云江  冉曾令  封莎 《光子学报》2014,39(11):2004-2007
提出了一种通过提高长距离光纤布喇格光栅传感系统容量,从而实现多传感点参量测量的新方法.采用时分复用、窄波长范围扫描激光方式,将多个中心波长相近的低反射率光纤布喇格光栅放置于系统的不同位置,构成准分布式光纤传感系统,实现了多个传感点参量的同时测量.同时提出了采用掺铒光纤和喇曼混合放大方法来延长传感距离.在系统的中间加入一个喇曼泵浦进行喇曼放大以此补偿光纤布喇格光栅反射的信号,系统末端的掺铒光纤利用前面喇曼泵浦剩余的泵浦功率产生自发辐射光并放大传感信号,使得整个系统的传感距离延长.实验证实:将三只中心波长均在1 580 nm附近,反射率均小于4%的光纤布喇格光栅,分别放置在系统的不同位置,在200 km处获得了15 dB的信噪比,反射信号明显|并且在200 km处的静态应变和温度实验中,线性度均达到了0.999以上.  相似文献   

4.
A high stable wavelength-tunable fiber laser is experimentally demonstrated by using a digital-micromirror-device (DMD) processor and a polarization-maintaining erbium-doped fiber amplifier (EDFA).The electronic-addressed DMD processor is able to select and couple a waveband from of the polarization-maintaining EDFA back into the fiber ring to generate a narrow line-width laser output. The tunable fiber laser shows a line-width of 0.02 nm, a tuning step of 0.08 nm over the c-band and a side mode suppression ratio (SMSR) greater than 50 dB. The output power uniformity of 0.01 mW is achieved by using the automatic power control (APC) system under room temperature. The center wavelength fluctuation during 1 h is below 0.01 nm.  相似文献   

5.
An all-optical widely tunable Raman fiber laser has been realized by incorporating a highly nonlinear fiber in a ring cavity. By feedback a portion of Raman Stokes wave back into the highly nonlinear gain medium, a Raman fiber laser is generated. We found that the lasing wavelength of Raman fiber laser can be tuned from 1537 to 1568 nm with peak power fluctuation within 1 dB, giving a total wavelength tunability of 31 nm. The optical signal-to-noise ratio is found to be wavelength dependent, and the highest optical signal-to-noise ratio of about 59 dB is recorded. The lasing threshold of the Raman fiber laser with this configuration is found to be as low as 300 mW.  相似文献   

6.
We demonstrate a passively Q-switched tunable erbium-doped fiber laser(EDFL)based on graphene as a saturable absorber(SA).A three-port optical circulator(OC)and a strain-induced tunable fiber Bragg grating(TFBG)are used as the two end mirrors in an all-fiber linear cavity.The Q-switched EDFL has a low pump threshold of 23.8 mW.The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from23.8 mW to 219.9 mW.The minimum pulse duration is 1.7μs and the highest pulse energy is 25.4 nJ.The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.  相似文献   

7.
In this paper, we report a fiber laser pressure sensor based on linear cavity erbium-doped fiber laser. The fiber laser structure comprises of an erbium-doped fiber amplifier, a circulator, an optical coupler and a fiber Bragg grating (FBG) which acts simultaneously as a lasing wavelength selecting components as well as a pressure sensor. The FBG is fitted to the shock tube where the pressure is applied. The fiber laser pressure sensor has a low threshold power of 7 mW, an output power of 2.28 mW and an optical signal to noise ratio over 55 dB. The proposed fiber laser sensor is expected to be an attractive choice for long-distance pressure monitoring.  相似文献   

8.
D. Chen  H. Fu  W. Liu 《Laser Physics》2007,17(10):1246-1248
A novel single-longitudinal-mode (SLM) erbium-doped fiber laser with a simple linear cavity based on a fiber Bragg grating Fabry-Perot filter (FBG-FPF) and a narrowband (~0.06 nm) FBG is proposed and demonstrated experimentally. Two uniform FBGs form the FBG-FPF, which has two ultranarrow transmission bands with a bandwidth of 0.12 pm and a wavelength spacing of 0.095 nm. By slightly tuning the central wavelength of the narrowband FBG, SLM lasing at 1549.658 or 1549.563 nm (corresponding to the two transmission peaks of the FBG-FPF) is achieved with a laser output power of ~4 mW, when the pump power is ~75 mW.  相似文献   

9.
饶云江  陈容睿  冉曾令 《光子学报》2007,36(9):1656-1659
提出了一种提高长距离光纤布喇格光栅信噪比以进行准分布测量的新方法.该方法基于掺铒光纤/喇曼混合放大的光纤激光器结构,掺铒光纤和滤波器构成的环形结构产生激光作为光源,喇曼光纤放大器对布喇格光栅信号进行低噪音的双向放大,置于远处的掺铒光纤利用剩余的泵浦功率产生自发辐射光和放大传感信号,为远处掺铒光纤之后的布喇格光栅传感器提供信号光以及补偿由于长距离传输造成的光纤损耗.实验显示,与使用宽带光源的传感方式相比,系统的性能得到显著提高,仅使用小功率泵浦,分布在50 km光纤上的FBG均获得了超过58 dB的优良信噪比.  相似文献   

10.
In this paper, we observed and experimentally investigated a high-performance single- and dual-wavelength erbium-doped fiber ring laser based on a Sagnac filter which contains a section of high-birefringence photonic crystal fiber (HB-PCF) and a polarization controller. Incorporation of the high-birefringence photonic crystal fiber can suppress multimode oscillation, improve power stability and increase the optical signal-to-noise ratio (SNR). Wavelength tunable was achieved by using a polarization controller in the Sagnac filter. Highly stable single-, dual-wavelength oscillations are tunable within a wavelength range from 1550 to 1562 nm and SNR as high as 57 dB with narrow line width about 0.011 nm, is experimentally demonstrated.  相似文献   

11.
Bismuth-based erbium-doped fiber (Bi-EDF) is demonstrated as an alternative medium for optical amplification and nonlinear applications. The bismuth glass host provides the opportunity to be doped heavily with erbium ions to allow a compact optical amplifier design. The bismuth-based erbium-doped fiber amplifier (Bi-EDFA) is demonstrated to operate at wavelength region from 1570 to 1620 nm using only a 215 cm long of gain medium. The maximum gain of 15.8 dB is obtained at signal wavelength of 1610 nm with the corresponding noise figure of about 6.3 dB. A multi-wavelength laser comb is also demonstrated using a stimulated Brillouin scattering in the 215 cm long Bi-EDF assisted by the 1480 nm pumping. The laser generates more than 40 lines of optical comb with a line spacing of approximately 0.08 at 1612.5 nm region using 152 mW of 1480 nm pump power.  相似文献   

12.
We report the experimental study of broadband spectrum generation in a piece of standard fiber (SMF-28) using as the pump a train of noise-like pulses, or sub-nanosecond packets of sub-ps pulses with randomly varying amplitudes. The pulses are generated by an erbium-doped figure-eight fiber laser, and present a wide (∼50 nm) optical spectrum, which represents a significant advantage to seed the generation of new frequencies. Another advantage of the pulses is their relatively large energy, as they are made up of a large number of ultrashort pulses. After amplification with an Erbium Doped Fiber Amplifier (EDFA), the pulses were injected in a 0.75 km length of SMF-28 fiber. We obtained experimentally at the end of the fiber an output signal spectrum extending from 1530 nm to at least 1750 nm (the upper limit of the spectrum analyzer) for pump pulses with an average power of 20.4 mW, corresponding to a few kilowatts peak power. The spectral broadening is due to Raman self-frequency shift (SFS). It is noteworthy that the spectrum of the newly created frequencies was extremely uniform over the range of measurement. Considering that the Raman shift is directly related to the pump pulse duration, spectral flatness is a direct consequence of the random distribution of amplitudes and durations of the pulses in the packet. Finally, the results show the capabilities of noise-like pulses from a fiber laser for applications in supercontinuum generation based on nonlinear phenomena such as Raman SFS.  相似文献   

13.
Ramzia Salem  A. M.  Al-Mansoori  M. H.  Hizam  H.  Mohd Noor  S. B.  Mahdi  M. A. 《Laser Physics》2011,21(2):389-394
A multiwavelength laser comb using 2.49 m Bismuth-oxide erbium-doped fiber (Bi-EDF) with different lengths of large effective area fiber (LEAF) in a ring cavity configuration is realized. The Bi-EDF is used as the linear gain medium and LEAF is used as the non-linear gain medium for stimulated Brillouin scattering. Out of the four different lengths, the longest length of 25 km LEAF exhibits the widest tuning range of 44 nm (1576 to 1620 nm) in the L-band at 264 mW pump power and 5 mW Brillouin pump power. In addition, a total of 15 output channels are achieved with total average output power of −8 dBm from this laser structure. All Brillouin Stokes signals exhibit high peak power of above −20 dBm per signal and their optical signal-to-noise ratio of greater than 15 dB.  相似文献   

14.
We have experimentally demonstrated a tunable multi-wavelength Brillouin–erbium fiber laser with over 40 GHz spacing utilizing two cascaded double Brillouin-frequency-spacing cavities. In this laser configuration, two segments of 25 km-long single-mode fibers are used as Brillouin gain medium in each ring cavity, and a segment of 8 m-long erbium-doped fiber with 980 nm pump is employed to amplify Brillouin pump (BP). At BP wavelength of 1550 nm, BP power of 8.3 dBm (6.8 mW) and the maximum 980 nm pump power of 27.78 dBm (600 mW), seven output channels with fourfold Brillouin-frequency spacing, and the tuning range of 15 nm from 1545 to 1560 nm are achieved. The proposed multi-wavelength Brillouin–erbium fiber laser has wide applications, such as in microwave signal generation and optical communications.  相似文献   

15.
A novel tunable multi-wavelength fiber ring laser based on semiconductor optical amplifier(SOA)is proposed by using a high-birefringence(Hi-Bi)fiber loop mirror(FLM)as wavelength filter.With this configuration,the wavelength spacing of this laser can be varied by using the different lengths of Hi-Bi fiber.8 wavelengths spacing on 450 GHz are experimentally obtained with more than 25-dB signal-to-noise ratio(SNR)for each channel using 1.28-m Hi-Bi fiber in Hi-Bi FLM.The output power variation between different channels is measured to be less than 5.9 dB.The linewidth of each channel is compressed from 0.347 to 0.186 nm by 1.5-m unpumped erbium-doped fiber(EDF).Meanwhile,17 wavelengths spacing on ITU-gird(100 GHz)are also obtained with 5.9-m Hi-Bi fiber in Hi-Bi FLM.All these channels can be tuned together over 0.4 nm.  相似文献   

16.
A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.  相似文献   

17.
A high-gain and low-noise-figure (NF) erbium-doped fiber amplifier (EDFA) was demonstrated utilizing a new technique called the dual-stage quadruple pass (DSQP) with filters. An efficient amplification occurs at the signal wavelength of 1550 nm when it travels along the DSQP amplifier. The highest gain of 62.56 dB with a low noise figure of 3.98 dB was achieved for an input signal power of −50 dBm and pump powers of 10 and 165mW in the second and first stage amplifiers respectively.  相似文献   

18.
A global design of an erbium-doped fiber and an open-loop erbium-doped fiber amplifier (EDFA) in a steady-state operation is discussed by applying genetic algorithms. Taking a signal gain and a bandwidth as objective functions, 7 parameters of the EDFA (erbium concentration, core radius, erbium-doped radius, refractive index difference, fiber length, pumping wavelength and signal power) are optimized by solving optical propagation equations, assuming a homogenous two-level active medium and a single-mode propagation. There is evidence to show that the 1480 nm pump utilized in usual EDFAs is not an optimal choice, which should be chosen around 1460 nm. The optimal core radius ranges 0.465–0.548 μm on pumping power 50–200 mW. Under different design objects and with different pumping powers, however, there are different optimal Er-doped concentrations, reflective index differences and fiber lengths. As a single fiber EDFA, 35 dB signal gain or 35 nm bandwidth is obtained with the 7 optimal parameters, 100 mW pumping power and 0.001 mW input signal power.  相似文献   

19.
基于拉曼光谱散射的新型分布式光纤温度传感器及应用   总被引:1,自引:0,他引:1  
介绍了分布式光纤拉曼温度传感器(DTS)的基本原理、发展趋势和工程应用研究状况,研究了分布式光纤拉曼温度传感器的关键技术,全面提升了DTS的性能。将拉曼放大技术应用于DTS系统,用拉曼增益部分抵偿光纤的传输损耗,使系统的传感长度达到50 km;对脉冲激光器进行211位循环编码,在接收时采用相关运算解调,显著提高系统的信噪比,使测温不确定度达到1 ℃;采用双波长自校正技术提高了系统的空间分辨率,达到2 m;在DTS系统中嵌入光开关,使测温通道成倍扩展,有效延伸了传感光纤的总长度,组成光纤传感网络。  相似文献   

20.
提出了一种提高长距离光纤布喇格光栅信噪比以进行准分布测量的新方法.本方法基于双向喇曼放大和双掺铒光纤结构,喇曼光纤放大器对布喇格光栅信号进行低噪音的双向放大,置于远处的掺铒光纤利用剩余的泵浦功率产生自发辐射光和放大传感信号,为第二段掺铒光纤之后的远处布喇格光栅传感器提供光以及补偿由于长距离传输造成的光纤损耗.实验显示传感器系统的性能得到显著提高.使用功率为240 mW的单个普通泵浦,分布在50 km光纤上的FBG均可获得15 dB的良好信噪比,比混合放大前提高了10 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号