首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kang TF  Shen GL  Yu RQ 《Talanta》1996,43(11):2007-2013
The permselectivity of neurotransmitters such as dopamine, epinephrine, and norepinephrine at overoxidized polypyrrole (OPPY)-film-coated glassy carbon electrodes has been investigated. The chemically-modified electrodes exhibit attractive permselectivity and antifouling properties of rejecting anionic species, e.g. ascorbate, etc. Compared with the response of neurotransmitters at modified electrodes overoxidized in phosphate buffer solution (pH 7.4), higher sensitivity and reversibility response can be obtained at modified electrodes overoxidized in sodium hydroxide solution. The effect of film thickness on the permselective response was tested. Rotating disk electrode experiments were used to determine the apparent diffusion coefficients of several electroactive solutes in the OPPY films. The influence of the hydrophobicity of the organic ions on the permeability within the polymer films was discussed. Dopamine and epinephrine were determined at the 1 x 10(-6)-1 x 10(-4) M level by means of voltammetry after an exposure period of 2 min in 0.1 M phosphate buffer (pH 7.4) with detection limits of 8 x 10(-7) M and 6 x 10(-7) M respectively.  相似文献   

2.
Silver ion-selective electrodes were prepared with polymeric membranes based on two calix[4]arene derivatives functionalized by two hydroxy and two benzothiazolylthioethoxy groups. The electrodes all gave a good Nernstian response of 58mV decade(-1) for silver in the activity range 5 x 10(-6)-10(-1) M, the limits of detection reached 10(-5.8) M and exhibited high selectivity towards alkali, alkaline earth and some transition metal ions. The electrode was used as indicator electrode in titrations of Ag+ with Cl- ion.  相似文献   

3.
Four different recently synthesized macrocyclic diamides were studied to characterize their abilities as uranyl ion carriers in PVC membrane electrodes. The electrodes based on macrocycle 1,18-diaza-3,4;15,16-dibenzo-5,8,11,14,21,24-hexaoxacyclohexaeicosane-2,17-dione resulted in a Nernstian response for UO(2)(2+) ion over wide concentration ranges. The linear concentration range for the polymeric membrane electrode (PME) is 3.0x10(-6)-8.2x10(-3) M with a detection limit of 2.2x10(-6) and that for the coated graphite electrode (CGE) is 5.0x10(-7)-1.5x10(-3) M with a detection limit of 3.5x10(-7) M. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations.  相似文献   

4.
The potentiometric anion selectivity of two polymer membrane based electrodes (I and II) formulated with two new cyclopalladated amine complexes as the active components are examined. The electrodes exhibit a non-Hofmeister selectivity pattern with a significantly enhanced response towards thiocyanate, iodide and nitrite. The graph potential versus log c is linear over the concentration range 10(-6)-6x10(-2) M thiocyanate with electrode I and 10(-6)-10(-3) M with electrode II; 10(-5)-10(-2) M iodide with electrode I and 10(-3)-6x10(-2) M with electrode II; and 10(-3)-6x10(-2) M nitrite with both electrodes. The influence of the plasticizer and pH are studied. The potentiometric selectivity coefficients for I, II and blank membrane electrodes are reported. The selective interaction between Pd(II) thiocyanate, iodide and nitrite is postulated to be the reason for its higher response.  相似文献   

5.
The construction and general performance characteristics of two novel potentiometric PVC membrane sensors responsive to the pyridoxine hydrochloride known as vitamin B6 (VB6) are described. These sensors are based on the use of the ion-association complexes of the pyridoxine cation with phosphomolybdate, and phosphotungstate counter anions as ion pair in a plasticized PVC matrix. The electrodes show a stable, near-Nernstian response for 6x10(-5)-1x10(-2) M VB6 at 25 degrees C over the pH range 2-4 with a cationic slope of 54.0+/-0.5 and 54.5+/-0.4 per concentration decade for pyridoxine-phosphomolybdate and pyridoxine-phosphotungstate respectively. The two electrodes have the same lower detection limit (4x10(-5) M) and the response times are 45-60 and 30-45 s in the same order for both. Selectivity coefficients for VB6 relative to a number of interfering substances were investigated. There is negligible interference from many cations, some vitamins and pharmaceutical excipients. Direct potentiometric determination of 15-2000 microg/ml pyridoxine shows an average recovery of 98.0% and 99.0% with relative standard deviation 1.5% and 1.2% at 100.0 microg/ml for pyridoxine-phosphomolybdate and pyridoxine-phosphotungstate electrodes, respectively. The determination of VB6 in some pharmaceutical preparations using the proposed electrodes gave an average recovery of 98.0 and 99.0% of the nominal value and a mean standard deviation of 1.1% and 0.9% (n=10) for pyridoxine-phosphomolybdate and pyridoxine-phosphotungstate electrodes, respectively. The results compare favorably with data obtained by the British Pharmacopoeia method.  相似文献   

6.
A cobalt(II) tetrakisphenylporphyrin (Co(II)TPP) film modified glassy carbon electrode (Co(II)TPP-GCE) was prepared by just coating Co(II)TPP solution on the surface of the electrode. It can be used for the simultaneous determination of ascorbic acid and uric acid. The anodic peaks of AA and UA can be separated well. Owing to the strongly hydrophobic property of porphyrin, the modified electrode has good stability and long life. The linear range for UA and AA were 2.0 x 10(-6)-1.0 x 10(-4) M and 9.0 x 10(-6)-2.0 x 10(-3) M with detection limits of 5.0 x 10(-7) and 5.0 x 10(-6) M, respectively. Furthermore, metalloporphyrins of other kinds were also used to construct modified electrodes. Their performances were inferior compared with that of the Co(II)TPP modified electrode.  相似文献   

7.
The construction and general performance of novel potentiometric membrane ion selective electrodes for determination of papaverine hydrochloride has been described. They are based on the formation of the ion association complexes of papaverine (PA) with tetraphenylborate (TPB)(I) or tetrathiocyanate (TTC)(II) counter anions as electro-active material dispersed in a PVC matrix. The electrodes show fast, stable, near Nernstian response for 1 x 10(-2) to 6 x 10(-5) M and 1 x 10(-2) to 1 x 10(-5) M for PA-TPB and PA-TTC respectively at 25 degrees C over the pH range of 3-5.0 with a cationic slope of approximately 56.5 +/- 0.5 mV/decade for both sensors respectively. The lower detection limit is 4 x 10(-5) and 8 x 10(-6) M for PA- I and PA-II respectively with fast response time ranging from 20-45 sec. Selectivity coefficients for PA relative to a number of interfering substances were investigated. There is a negligible interference from the studied cations, anions, and pharmaceutical excipients. The determination of 4.0- 3000.0 microg/ml of PA in aqueous solutions shows an average recovery of 99.1% and a mean relative standard deviation of 1.4 at 100microg/ml. The direct determination of PA in some formulations (Vasorin injection) gave results that compare favorably with those obtained using the British Pharmacopoeia method. Potentiometric titration of PA with sodium tetraphenylborate and potassium thiocyanate as titrants utilizing the papaverine electrode as an end point indicator electrode has been carried out.  相似文献   

8.
Novel PVC membrane electrodes for the determination of betaine ion based on the formation of betaine-tetraphenylborate (Be-TPB) and betaine-phosphotungstate (Be-PT) ion-exchangers as electroactive materials are described. The sensors show a fast, stable, near Nernstian response for 6.92 x 10(-6) to 7.94 x 10(-3) M and 1.0 x 10(-4) to 1.0 x 10(-2) M betaine hydrochloride (Be.Cl) in case of Be-TPB electrode applying batch and flow injection analysis (FIA), respectively, and 2.95 x 10(-5) to 2.26 x 10(-3) M and 3.16 x 10(-5) to 1.0 x 10(-2) M in case of Be-PT electrode for batch and FIA electrodes, respectively, at 25 degrees C over the pH range of 3.5-10 with a cationic slope of 60.2 and 59.1 mV decade(-1) and a fast potential response of < or =15 s. The lower detection limits are 7.94 x 10(-6) and 3.18 x 10(-5) M Be.Cl for Be-TPB and Be-PT electrodes, respectively. Selectivity coefficient data for some common inorganic cations, sugars, amino acids and the components other than betaine, of the mixed drug investigated show negligible interference. The electrodes have been applied to the direct potentiometric determination of betaine hydrochloride in water and in a pharmaceutical preparation under batch and FIA conditions. Potentiometric titrations of Be.Cl with NaTPB and PTA as titrants were monitored with the developed betaine electrodes as an end point indicator electrode. The determination of Be.Cl shows an average recovery of 100.8% with mean relative standard deviation of 0.61%. The effect of temperature on the electrodes was also studied.  相似文献   

9.
New pseudoephedrine selective electrodes have been constructed of the conventional polymer membrane type by incorporation of pseudoephedrine-phosphotungstate (PE-PT) or pseudoephedrine-silicotungstate (PE-SiT) ion-associates in a poly vinyl chloride (PVC) membrane plasticized with dibutyl phthalate (DBP). The electrodes were fully characterized in terms of the membrane composition, temperature, and pH. The electrodes exhibited mean slopes of calibration graphs of 57.09 and 56.10 mV concentration decade(-1) of PECl at 25 degrees C for (PE-PT) and (PE-SiT) electrodes, respectively. The electrodes showed fast, stable, and near-Nernstian response over the concentration ranges 6.31 x 10(-6)-1.00 x 10(-2) and 5.00 x 10(-5)-1.00x10(-2) M in the case of PE-PT applying batch and flow injection (FI) analysis, respectively, and 1.00 x 10(-5)-1.00 x 10(-2) and 5.00 x 10(-5)-1.00x10(-2) M in the case of PE-SiT for batch and FI analysis system, respectively. Detection limit was 5.01x 10(-6) M for PE-PT electrode and 6.31x10(-6) M for PE-SiT electrode. The electrodes were successfully applied for the potentiometric determination of pseudoephedrine hydrochloride (PECl) in pharmaceutical preparations with mean recovery 101.13 +/- 0.85% and 100.77+0.79% in case of PE-PT applying batch and flow injection systems, respectively, and 100.75+0.85% and 100.79 +/- 0.77% in case of PE-SiT for batch and flow injection systems, respectively. The electrodes exhibited good selectivity for PECl with respect to a large number of inorganic cations, sugars and amino acids.  相似文献   

10.
Long Y  Lei L  Li W  He D  Nie L  Yao S 《The Analyst》1999,124(11):1629-1634
The method describes the use of a piezoelectric quartz crystal (PQC) as a substitute for ion-selective electrodes. The approach is feasible when the membrane materials are electrically non-conductive and membrane potential measurements are consequently not possible. An ion-selective piezoelectric sensor sensitive to atropine sulfate was constructed by coating a PVC membrane containing activant on one the side of a PQC. On the basis of selective adsorption of atropine ions across the modified film and the sensitive mass response of PQC, the method exhibits a sensitive, rapid response and is easy to operate without pretreatment of the sample. The logarithm of the frequency shift gave a linear relationship with the logarithm of atropine sulfate concentration in the 1.0 x 10(-8)-1.0 x 10(-3) M range with a detection limit of 5.0 x 10(-9) M at pH 7.0. Recoveries were from 98.7-102.2%. Two activants, atropine tetraphenylborate and atropine dipicrylaminate, were synthesized and investigated. Influencing factors were also examined and optimized. The results for real samples obtained by the proposed method agreed with those obtained by conventional methods.  相似文献   

11.
Electroactive nickel(II) hexacyanoferrate (NiHCF) thin film modified electrodes are effective potentiometric sensors for the determination of potassium ions. The NiHCF films are deposited onto glassy carbon electrodes by repetitive potential cycling in K(3)Fe(CN)(6)/NaNO(3)/Ni(NO(3))(2) solution. The modified electrodes exhibit a linear response to potassium ions in the concentration range 1x10(-3) to 2.0 mol dm(-3), with a near-Nernstian slope (45-49 mV per decade) at 25 degrees C. In the determination of potassium ion in syrups used for treatment of potassium deficiency, the NiHCF-modified electrode gave comparable results to those obtained using flame emission spectrophotometry.  相似文献   

12.
Batch-injection analysis exhibits the advantages of rapid and simple electroanalysis of microlitre samples. Nafion-coated mercury thin film electrodes have been evaluated for use in batch-injection analysis with anodic stripping voltammetry (BIA-ASV). The advantages of Nafion-coated electrodes in reducing electrode contamination by components of complex matrices are combined with the analysis of small microlitre sample volumes. The measurement of traces of lead and cadmium is used to illustrate the approach. An optimised procedure for formation of Nafion-coated mercury thin film electrodes is evolved. The relative sensitivity for BIA-ASV at electrodes with and without Nafion coatings is 0.9 and 0.8 for cadmium and lead respectively; detection limits are 2 x 10(-9) M and 4 x 10(-9) M. Studies were done concerning the influence of surfactants and their effect was found to be much less with the Nafion film coating. Applications to real environmental samples are demonstrated.  相似文献   

13.
A comparative study was made between developed chemically modified carbon paste electrodes and PVC membrane electrodes for the cationic surfactant cetyltrimethylammonium bromide (CTAB). The carbon paste electrode modified with cetyltrimethylammonium-tetrachloropalladate(II) (CTA-TClP) provides a more sensitive and stable device than that shown by electrodes with an inner reference solution. The best performance was obtained by an electrode based on the paste containing 3.6 wt% CTA-TCIP, 1.8 wt% ethylhexadecyldimethylammonium bromide, 37.6 wt% graphite and 57 wt% tricresyl phosphate. The sensor exhibited a Nernstian response for CTAB over a wide concentration range of 3.5 x 10(-7) to 1.0 x 10(-3) M with a detection limit of 2.0 x 10(-7) M between pH 2.7 and 8.2 with a fast response time of 相似文献   

14.
The amperometric determination of sulfite was performed using copper electrodes in alkaline media. A mechanism for the oxidation of sulfite at these electrodes is suggested, based on the formation of superficial CuO(.OH), which acted as an electron transfer mediator to the analyte. At 0.5 V versus SCE in 1 M NaOH, sulfite could be calibrated at a sensitivity of 0.2 A l mol-1 cm-2, with a response time for the steady state of 30 s. The limit of detection (three times the signal-to-noise ratio) was 2.5 x 10(-6) M and the response was linear up to 5 x 10(-4) M (r2 = 0.9996, n = 15). The standard deviation (n = 10) at 1 x 10(-5) and 1 x 10(-4) M was 3.27 x 10(-7) A cm-2 (mean = 3.62 x 10(-6) A cm-2) and 1.07 x 10(-13) A cm-2 (mean = 2.25 x 10(-5) A cm-2), respectively.  相似文献   

15.
New ranitidine hydrochloride (RaCl)-selective electrodes of the conventional polymer membrane type are described. They are based on incorporation of ranitidine-tetraphenylborate (Ra-TPB) ion-pair or ranitidine-phosphotungstate (RaPT) ion-associate in a poly(vinyl chloride) (PVC) membrane plasticized with dioctylphthalate (DOP) or dibutylphthalate (DBP). The electrodes are fully characterized in terms of the membrane composition, solution temperature, and pH. The sensors showed fast and stable responses. Nernstian response was found over the concentration range of 2.0 x 10(-5) M to 1.0 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-TPB electrode and over the range of 1.03 x 10(-5) M to 1.00 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-PT electrode for batch and FIA systems, respectively. The electrodes exhibit good selectivity for RaCl with respect to a large number of common ions, sugars, amino acids, and components other than ranitidine hydrochloride of the investigated mixed drugs. The electrodes have been applied to the potentiometric determination of RaCl in pure solutions and in pharmaceutical preparations under batch and flow injection conditions with a lower detection limit of 1.26 x 10(-5) M and 5.62 x 10(-6) M at 25 +/- 1 degrees C. An average recovery of 100.91% and 100.42% with a relative standard deviation of 0.72% and 0.53% has been achieved.  相似文献   

16.
Dithiodibenzoic (DTB) acid and mercaptobenzoic (MB) acid were studied to characterize their abilities as modifier agents for lead(II) sensors. For both sensors, the best results were obtained with modified carbon paste electrodes with 24.1% of ligand. The pH influence on the potentiometric response was studied. The selectivity coefficients for both modified electrodes were tabulated. A potentiometric sensor based on DTB acid exhibited a more sensitive and selective response to lead ions than an MB electrode. The limits of detection for the DTB and MB electrodes were very similar, 5.01 x 10(-8) M and 3.98 x 10(-8) M, respectively, for lead(II) activity. The DTB sensor was applied to lead(II) ion determination in real samples and as an indicator electrode in potentiometric titrations. Natural and commercial humic acids were titrated using the DTB electrode to estimate the stability constant between these organic compounds and the lead(II) ions with successful results.  相似文献   

17.
The electrochemical response characteristics of poly(vinyl)chloride (PVC) based membrane sensors for determination of tetramisole hydrochloride (TmCl) is described. The membranes of these electrodes consist of tetramisole-tetraphenyl borate (Tm-TPB), chlorophenyl borate (Tm-ClPB), and phosphotungstate (Tm(3)-PT) ion associations dispersed in a PVC matrix with dibutylpthalate as a plasticizer. The electrodes were fully characterized in terms of composition, life span, usable pH range, and working concentration range and ionic strength. The electrodes showed Nernstian response over the concentration ranges of 7.4 x 10(-7) to 1.0 x 10(-2) M, 1.7 x 10(-6) to 1.0 x 10(-2) M, and 5.6 x 10(-6) to 1.0 x 10(-2) M TmCl, respectively, and were applied to the potentiometric determination of tetramisole ion in pure solutions and pharmaceutical preparations. The potentiometric determination was also used in the determination of tetramisole in pharmaceutical preparations in four batches of different expiration dates. The electrodes exhibited good selectivity for TmCl with respect to a large number of excipients such as inorganic cations, organic cations, amino acids, and sugars. The solubility product of the ion-pair and the formation constant of the precipitation reaction leading to the ion-pair formation were determined conductometrically. The new potentiometric method offers the advantages of high-throughput determination, simplicity, accuracy, automation feasibility, and applicability to turbid and colored sample solutions.  相似文献   

18.
A simple and very selective electrode, based on a mercury ion imprinted polymer (IIP), and its application for the determination of Hg(2+) ions in the real samples is introduced. Mercury ion selective cavities were created in the vinyl pyridine based cross-linked polymer. In order to fabricate the sensor carbon particles and polymer powder were mixed with melted n-eicosane. An explicit difference was observed between the responses of the electrodes modified with IIP and non imprinted polymer (NIP), indicating proper performance of the recognition sites of the IIP. Various factors, known to affect the response behavior of selective electrode, were investigated and optimized. The interference of different ionic species with the response of the electrode was also studied. The results revealed that, compared to previously developed mercury selective sensors, the proposed sensor was more selective, regarding the common potential interferer. This sensor showed a linear response range of 2.5 × 10(-9)-5.0 × 10(-7) M and lower detection limit of 5.2 × 10(-10) M (S/N). The sensor was successfully applied to the determination of mercury in real samples.  相似文献   

19.
O'Shea TJ  Leech D  Smyth MR  Vos JG 《Talanta》1992,39(4):443-447
The use of carbon paste electrodes modified with [Ru(bpy)(2)(PVP)(10)Cl]Cl for the mediated detection of nitrite is described. This surface modifier substantially lowers the overpotential for nitrite oxidation, hence permitting its determination at a lower potential. Various electrode characteristics were optimized, including the modifier loading and the monitoring potential, using batch amperometry. Standard calibration curves yielded slopes of 0.30 microA/microM over the linear range 5 x 10(-8)-5 x 10(-4)M nitrite with a detection limit of 3 x 10(-8)M (1.38 ppb) nitrite. The modified electrode response was shown to be relatively stable over a period of 5 days with a signal diminution of 8%. Electrode-to-electrode precision was measured as 11.4%. Flow-injection studies indicated the suitability of this electrode as a detector in flowing streams.  相似文献   

20.
The electrochemical behavior of atorvastatin calcium at glassy carbon and boron-doped diamond electrodes has been studied using voltammetric techniques. The possible mechanism of oxidation was discussed with model compounds. The dependence of the peak current and potentials on pH, concentration, scan rate and nature of the buffer were investigated for both electrodes. The oxidation of atorvastatin was irreversible and exhibited a diffusion-controlled fashion on the diamond electrode. A linear response was obtained within the range of 9.65 x 10(-7) - 3.86 x 10(-5) M in 0.1 M H(2)SO(4) solution for both electrodes. The detection limits of a standard solution are estimated to be 2.11 x 10(-7) M with differential pulse voltammetry (DPV) and 2.05 x 10(-7)M with square wave voltammetry (SWV) for glassy carbon electrode, and 2.27 x 10(-7) M with DPV and 1.31 x 10(-7)M with SWV for diamond electrodes in 0.1 M H(2)SO(4) solution. The repeatability of the methods was found good for both electrodes. The methods were fully validated and successfully applied to the high-throughput determination of the drug in tablets, human serum and human urine with good recoveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号