首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, Fe3O4-ZrO2 functionalized with 3-aminopropyltriethoxysilane (Fe3O4-ZrO2@APS) nanocomposite was investigated as a nanoadsorbent for the removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions from aqueous solution and real samples in batch mode systems. The prepared magnetic nanomaterials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy/energy dispersion x-ray (SEM/EDX) Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Factors (such as adsorbent dose and sample pH) affecting the adsorption behavior of the removal process were studied using the response surface methodology. Under optimized condition, equilibrium data obtained were fitted into the Langmuir and Freundlich isotherms and the data fitted well with Langmuir isotherms. Langmuir adsorption capacities (mg/g) were found to be 113, 111, 128, and 123 mg/g for Cd, Cu, Ni and Mn, respectively. In addition, the adsorption kinetics was analyzed using five kinetic models, pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models. The adsorbent was successfully applied for removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions in wastewater samples.  相似文献   

2.
The present study reports the competitive adsorptive removal of cadmium (Cd(II)) and zinc (Zn(II)) ions from binary systems using rice husk ash (RHA), a waste obtained from the rice husk-fired furnaces, as an adsorbent. The initial pH (pH0) affects significantly the capacity of RHA for adsorbing the metallic ions in the aqueous solution. The pH0  6.0 is found to be the optimum for the removal of Cd(II) and Zn(II) ions by RHA. The single ion equilibrium adsorption from the binary solution is better represented by the non-competitive Redlich–Peterson (R–P) and the Freundlich models than by Langmuir model in the initial metal concentration range of 10–100 mg/l. The adsorption of Zn(II) ion is more than that of Cd(II) ion, and this trend is in agreement with the single-component adsorption data. The equilibrium metal removal decreases with increasing concentrations of the other metal ion and the combined effect of Cd(II) and Zn(II) ions on RHA is generally found to be antagonistic. Non-modified Langmuir, modified Langmuir, extended-Langmuir, extended-Freundlich, Sheindorf–Rebuhn–Sheintuch (SRS), non-modified R–P and modified R–P adsorption models were tested to find the most appropriate competitive adsorption isotherm for the binary adsorption of Cd(II) and Zn(II) ions onto RHA by minimizing the Marquardt's percent standard deviation (MPSD) error function. The extended-Freundlich model satisfactorily represents the adsorption equilibrium data of Cd(II) and Zn(II) ions onto RHA.  相似文献   

3.
In the present study, adsorption of Ni(II) and Pb(II) from aqueous solution was investigated using activated carbon synthesized with industrial wastewater sludge. The synthesized adsorbent was analyzed using nitrogen adsorption–desorption and Fourier transfer infrared (FTIR) techniques. Batch adsorption mode was used to evaluate the effect of solution pH, contact time, adsorbent dose, initial metal ion concentration, and temperature on the adsorption capacity of the synthesized adsorbent. The kinetic data were analyzed using different kinetic models. The pseudo-second-order equation gave the best fit to the experimental data for both metal ions. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm models. The results showed that the data obtained for the Ni(II) and Pb(II) adsorption are in good agreement with the Langmuir model. The Langmuir mono-layer maximum adsorption capacities for Ni(II) and Pb(II) ions were estimated to be 74.06 and 88.76 mg g?1 at 25°C, respectively. In addition, the thermodynamic studies proved that the adsorption process of both metals could be considered endothermic.  相似文献   

4.
Adsorption to microcrystalline cellulose (Avicel) of pure cellobiohydrolase I and II (CBH I and CBH II) fromTrichoderma reesei has been studied. Adsorption isotherms of the enzymes were measured at 4‡C using CBH I and CBH II alone and in reconstituted equimolar mixtures. Several models (Langmuir, Freundlich, Temkin, Jovanovic) were tested to describe the experimental adsorption isotherms. The isotherms did not follow the basic (one site) Langmuir equation that has often been used to describe adsorption isotherms of cellulases; correlation coefficients (R2) were only 0.926 and 0.947, for CBH I and II, respectively. The experimental isotherms were best described by a model of Langmuir type with two adsorption sites and by a combined Langmuir-Freundlich model (analogous to the Hill equation); using these models the correlation coefficients were in most cases higher than 0.995. Apparent binding parameters derived from the two sites Langmuir model indicated stronger binding of CBH II compared to CBH I; the distribution coefficients were 20.7 and 3.7 L/g for the two enzymes, respectively. The binding capacity, on the other hand, was higher for CBH I, 1.0 Μmol (67 mg) per gram Avicel, compared to 0.57 Μmol/g (30 mg/g) for CBH II. The isotherms when analyzed with the combined Langmuir-Freundlich model indicated presence of unequal binding sites on cellulose and/or negative cooperativity in the binding of the enzyme molecules.  相似文献   

5.
The present study was undertaken to develop a novel adsorbent for heavy metal ions, and this paper presents the synthesis and characterization of a composite material-silica gel microspheres encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) with a core-shell structure. SG-PS-azo-SA was used to investigate the adsorption of Mn(II), Co(II), Ni(II), Fe(III), Hg(II), Zn(II), Cd(II), Cr(VI), Pd(II), Cu(II), Ag(I), and Au(III) from aqueous solutions. The results revealed that SG-PS-azo-SA has better adsorption capacity for Cu(II), Ag(I) and Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation with the maximum adsorption capacity for Cu(II), Ag(I), and Au(III) at 1.288 mmol g−1, 1.850 mmol g−1 and 1.613 mmol gt-1, respectively. Thus, silica gel encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) is favorable and useful for the removal of Cu(II), Ag(I) and Au(III) metal ions.  相似文献   

6.
Abstract

In the present work, a novel composite consisting of magnetite, activated carbon from spent coffee grounds and natural clay (MACCC) was prepared by a one-pot synthesis method via a simultaneous activation and magnetization processes. Various techniques (XRD, FTIR, SEM, TEM, EDX, BET) were utilized to characterize the synthesized composite before utilizing it as an adsorbent for removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions. Conditions for removal of heavy metals were thoroughly optimized as 25?°C, pH of 5.5, adsorbent dosage of 2?g L?1, and a contact time of 60?min. Three models of pseudo first-, second-order and intraparticle diffusion as well as three models of Langmuir, Freundlich, and Temkin were used to analyze kinetics and isotherms of the adsorption process. Thermodynamics was discussed completely. Regeneration and recyclability of the adsorbent were also evaluated. Based on the analysis of experimental results, a possible adsorption mechanism of heavy metals onto the synthesized composite was proposed. The maximum capacities caculated from Langmuir model followed the order of Pb(II) > Cu(II) > Ni(II) as 143.56, 96.16 and 84.86?mg·g?1, respectively. The overall results indicated that MACCC is a potential adsorbent for removal of toxic Pb(II), Cu(II) and Ni(II) ions from wastewater due to simple preparation, high removal efficiency and good recyclability.  相似文献   

7.
一个与吸附剂浓度有关的Langmuir等温式   总被引:1,自引:0,他引:1  
实验测定了不同吸附剂浓度下, 高岭土对Pb(II)和Cu(II)的吸附作用, 结果表明存在明显的吸附剂浓度效应, 即吸附等温线随吸附剂浓度升高而降低. 采用传统的Langmuir 吸附等温式对实验数据进行拟合表明, 此等温式可准确地描述给定吸附剂浓度下的吸附结果, 但不能预测其吸附剂浓度效应. 根据表面组分活度(SCA)模型, 假设吸附剂颗粒间存在相互作用, 吸附剂表面吸附位的活度系数不等于1, 而应为吸附剂浓度的函数, 推导出了一个与吸附剂浓度有关的Langmuir (Langmuir-SCA)方程. 运用高岭土吸附Pb(II)和Cu(II)以及文献中蛭石吸附Zn(II)和Cd(II)、咖啡吸附Pb(II)的实验数据检验方程的适用性, 结果表明Langmuir-SCA方程可准确地描述所观察到的吸附剂浓度效应. 方程的两个内禀参数, 热力学平衡常数(Keq)和特征饱和吸附量(Γm0), 与吸附剂浓度无关, 并可由吸附实验数据拟合求得.  相似文献   

8.
In the present study, Pb(II) removal efficiency of Strychnos potatorum seed powder (SPSP) from aqueous solution has been investigated. Batch mode adsorption experiments have been conducted by varying pH, contact time, adsorbent dose and Pb(II) concentration. Pb(II) removal was pH dependent and found to be maximum at pH 5.0. The maximum removal of Pb(II) was achieved within 360 min. The Lagergren first-order model was less applicable than pseudo-second-order reaction model. The equilibrium adsorption data was fitted to Langmuir and Freundlich adsorption isotherm models to evaluate the model parameters. Both models represented the experimental data satisfactorily. The monolayer adsorption capacities of SPSP as obtained from Langmuir isotherm was found to be 16.420 mg/g. The FTIR study revealed the presence of various functional groups which are responsible for the adsorption process.  相似文献   

9.
MX-80 bentonite was detected using acid-based titration, XRD and FTIR in detail. The sorption behavior of 63Ni(Ⅱ) from aqueous solution to MX-80 bentonite was investigated as a function of solid content, ionic strength and pH by using batch technique. The experimental data of 63Ni(Ⅱ) sorption on MX-80 bentonite was obtained using the diffuse layer model (DLM) with the aid of FITEQL 3.1 program. The results indicated that the sorption of 63Ni(Ⅱ) on MX-80 bentonite was mainly dominated by surface complexation...  相似文献   

10.
The removal of heavy metals, such as Cu(II), Cd(II) and Cr(III) from aqueous solution was studied using Chorfa silt material (Mascara, Algeria). The main constituents of silt sediment are quartz, calcite and mixture of clays. The experimental data were described using Freundlich, Langmuir, Dubinin–Radushkevich (D–R) and Langmuir–Freundlich models. The adsorbed amounts of chromium and copper ions were very high (95% and 94% of the total concentration of the metal ions), whereas cadmium ion was adsorbed in smaller (55%) amounts. The Langmuir–Freundlich isotherm model was the best to describe the experimental data. The maximum sorption capacity was found to be 26.30, 11.76 and 0.35 mg/g for Cr3+, Cu2+ and Cd2+, respectively. The results of mean sorption energy, E (kJ/mol) calculated from D–R equation, confirmed that the adsorption of copper, chromium and cadmium on silt is physical in nature.  相似文献   

11.
In this study, natural halloysite nanotubes (HNTs) were applied to remove radiocobalt from wastewaters under various environmental parameters such as contact time, pH, ionic strength, foreign ions and temperature by using batch technique. The results indicated that the sorption of Co(II) on HNTs was dependent on ionic strength at pH < 8.5 and independent of ionic strength at pH > 8.5. Langmuir and Freundlich models were applied to simulate the sorption isotherms of Co(II) at three different temperatures of 293, 313 and 333 K. Langmuir model fitted the sorption isotherms of Co(II) on HNTs better than Freundlich model. The thermodynamic parameters (ΔG 0, ΔS 0 and ΔH 0) calculated from the temperature-dependent sorption isotherms manifested that the sorption of Co(II) on HNTs was an endothermic and spontaneous process. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation or precipitation was the main sorption mechanism at high pH. The experimental results show that HNTs have good potentialities for cost-effective disposal of cobalt-bearing wastewaters.  相似文献   

12.
The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H2SO4 modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin–Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (RL) indicated that chitosan–H2SO4 was favorable for Pb(II) and Cu(II) adsorption.  相似文献   

13.
A low-cost, highly efficient and eco-friendly cellulose-based adsorbent (CMGT) was synthesized and used to uptake Pb(II) and malachite green (MG) from aqueous solutions. The CMGT was characterized by FTIR, SEM, TGA and XRD. Different experimental parameters were evaluated in batch adsorption experiments to determine the optimal adsorption conditions. The optimal pHs for Pb(II) and MG were 5.5 and 7.0, respectively; the optimal contact times for Pb(II) and MG were 60 and 180 min, respectively. Among the Langmuir, Freundlich and Temkin isotherm models, the Langmuir model fitted the adsorption data best for both Pb(II) and MG adsorption. In theory, the maximum adsorption capacities of Pb(II) and MG were 584.80 and 131.93 mg g?1, respectively. The pseudo-second-order model fitted the experimental data very well, and the thermodynamics were also used to discuss the mechanism in depth. Additionally, desorption tests showed that CMGT could be effectively regenerated by 0.2 mol L?1 HCl solution and could be reused for at least six cycles successively with a stable sorption ability in the dynamic adsorption process.  相似文献   

14.
The morphological and mineralogical composition of a termite mound from Ilorin, Nigeria was investigated with a view to understand its sorption properties. The termite hill soil was subjected to some spectroscopic analyses such as X-ray fluorescence (XRF) and Scanning Electron Microscopy. The XRF results revealed that the adsorbent contains a large fraction of Silicon, Iron and Aluminium minerals. The organic matter (OM) content expressed as percentage carbon was 3.45% while the high value of cation exchange capacity of 14.0?meq/100?g is in agreement with high percentage OM, which signifies high availability of exchangeable ions. The maximum Pb(II) adsorption capacity of the mound was found to be 15.5?mg/g. Batch adsorption experiments were carried out as a function of contact time, ionic strength and pH. Maximum and constant adsorption was observed in the pH range of 2?C5.5. The experimental results of Pb(II) adsorption were analyzed using Langmuir, Freundlich, and Temkin isotherms. The Langmuir and Temkin isotherms were found to fit the measured sorption data better than Freundlich. The constants obtained from the Langmuir model are maximum sorption value, Q m?=?18.18 and Langmuir energy of adsorption constant, b?=?0.085, while the constants of the Freundlich model are the intensity of adsorption constant, n?=?0.134, and maximum diffusion constant, K f?=?1.36. The adsorption data for Pb(II) was found to fit well into the pseudo-second order model. Desorption experiment was conducted using different concentrations of leachant and this was repeated three times to determine the life span of the adsorbent. It was observed that 0.2?M HCl had the highest desorption efficiency for reuse.  相似文献   

15.
16.
Abstract

In this paper, a selective nickel ions chelating adsorbents (Ni-CMCS) were prepared based on carboxymethyl chitosan by ion imprinting technique. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to investigate their physicochemical properties. Brunauer-Emmett-Teller (BET) analysis showed that the BET surface area of Ni-CMCS had a significant increase after ion imprinting process. The effects of pH value, contact time and initial concentration of Ni(II) were studied. The adsorption kinetics were investigated, which indicated that Ni-CMCS was better fitted with pseudo-second-order kinetic model (R2 = 0.9991) with film diffusion process as rate controlling step. The adsorption isotherms study indicated that Langmuir model matched better with the experimental data for Ni-CMCS (R2 = 0.9617). Besides, the maximum adsorption capacity calculated from the Langmuir equation was 82.78?mg g?1. Moreover, the selectivity experiment suggested that Ni-CMCS had good selectivity in the presence of Co(II), Mn(II), or Cd(II). After used four cycles, Ni-CMCS kept great adsorption capacity.  相似文献   

17.
The studies of kinetics and equilibrium sorption of Cu(II) were undertaken using nanoscale zerovalent manganese (nZVMn) synthesized by chemical reduction in a single pot system. nZVMn was characterized using scanning electron microscopy, energy dispersive x-ray, and surface area determined by Brunauer–Emmett–Teller. The effect of pH, contact time, adsorbent dose, agitation speed, initial Cu(II) concentrations, temperature, and ionic strength on the sorption of Cu(II) onto nZVMn were investigated in a batch system. The kinetic data followed pseudo-second-order. The mechanism was governed by pore diffusion. The equilibrium sorption data were tested by Freundlich, Langmuir, Temkin, Dubinin–Kaganer–Raduskevich, and Halsey isotherm models. The Langmuir monolayer adsorption capacity (Qmax = 181.818 mg/g) is much greater compared to other nano-adsorbents used in sorption of Cu(II). The thermodynamic parameters (ΔH0, ΔS0, ΔG0) revealed a feasible, spontaneous, and endothermic adsorption process. nZVMn has a great potential for effective removal of copper (II) in aqueous solution.  相似文献   

18.
Among a variety of microbial materials employed for biosorption, algae have added advantages of non-toxic and autotrophic nature. In this study, biosorption of Hg(II) was studied with red algal biomass of Porphyridium cruentum. The parameters affecting biosorption such as dosage of biosorbent, pH, contact time, initial metal concentration, temperature and effect of foreign metal cations in binary system were evaluated. Kinetic data were described with the help of pseudo-first-order and pseudo-second-order kinetic models. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models were applied to adsorption equilibrium data. According to the results, the maximum removal capacity (qmax) was 2.62?mg/g observed at pH 7 with 0.25?g/L of biosorbent dosage for Hg(II) solution containing 10?mg/L of metal ions. The Langmuir isotherm model fits best to the adsorption data while the kinetic data followed the pseudo-second-order model. Thermodynamics studies showed that the biosorption process of Hg(II) on P. cruentum was exothermic in nature.  相似文献   

19.
The adsorption of Cd(II) and Co(II) onto goethite was measured at five temperatures between 10 and 70 degrees C. For both cations the amount adsorbed at any given pH increased as the temperature was increased. Cd(II) adsorbed at a slightly lower pH at each temperature than Co(II). Adsorption isotherms at pH 7.00 for Cd(II) could be fitted closely by a simple Langmuir model, but a two-site Langmuir model was needed for Co(II). Potentiometric titrations of goethite suspensions in the presence and absence of added cation could be modeled closely by a constant-capacitance surface complexation model that assumed the adsorption reactions M2+ + SOH ⇋ SOM+ + H+ and M2+ + SOH + H2O ⇋ SOMOH + 2H+, where M represents Cd or Co. This model also fitted the experimental data from the adsorption edge and adsorption isotherm experiments. Thermodynamic parameters estimated from both Langmuir and surface complexation models showed that the adsorption of both metals was endothermic. Values obtained for the adsorption enthalpies from both modeling schemes were similar for both cations. Estimates of the adsorption entropies were model-dependent: Langmuir parameters yielded positive entropies, while some of the surface complexation parameters generated negative adsorption entropies. Copyright 1999 Academic Press.  相似文献   

20.
Adsorption of Cd (II), Cu (II), Ni (II), and Zn (II) from aqueous solutions on anaerobically digested sludge has been investigated. Experimental data has been fit to Langmuir, Freundlich, and Redlich-Peterson isotherms to obtain the characteristic parameters of each model. Based on the maximum adsorption capacity obtained from the Langmuir and the Redlich-Peterson isotherm the affinity of the studied metals for the sludge has been established as Cu (II)>Cd (II)>Zn (II)>Ni (II). Adsorption tests from multimetal systems confirm the affinity order obtained in the individual metal tests. The adsorption capacity for Cu (II) measured in individual tests is not reduced by the presence of the other above referred metals. Desorption of Zn (II) and Cd (II) previously bound to the sludge in front of Cu (II) and HCl solutions is also reported. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号