首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li LY  Gui MD  Zhao YQ 《Talanta》1995,42(1):89-92
The optimum chromatographic separation conditions for Co(II), Ni(II), and Fe(III) chelates with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM) were investigated. The compositions of chelates were also determined by the HPLC method and thus the possible structure of chelates was given. A precolumn derivatization method was used, followed by separation on an octyl-bonded silica stationary phase with a methanol-tetrahydrofuran-water (40:9:51, v/v/v) mobile phase containing pH 5.8 acetate buffer and 1 x 10(-4)M TAM. The detection limits of Co(II), Ni(II), and Fe(III) at 560 nm are 0.03, 0.02 and 0.1 ng (S N = 2 ), respectively. They can be determined by means of the proposed method without interference from other common metal ions and have been determined in five standard alloys with satisfactory results.  相似文献   

2.
Sommer L  Ivanov VM  Novotná H 《Talanta》1967,14(3):329-343
The uranyl ion and 4-(2-pyridylazo)resorcinol (PAR) form only 1:1 chelates in solutions of pH < 8.5, UO(2),(PAR)H(+) being formed at pH > 3 and UO(2),(PAR) at pH > 5.5. Equilibrium constants and spectrophotometric data for both chelates are given. Solid, non-stoichiometric crystalline species in which the mole ratio of PAR to uranium is more than 1:1 are precipitated up to pH 6. The medium of 0.1-0.2M triethanolamine at pH 8 recommended by other workers proved satisfactory for the sensitive spectrophotometric determination of uranium, as did pH 3.6 in the presence of < 0.1M formate or 20-30% v/v dimethylformamide.  相似文献   

3.
Inoue S  Hoshi S  Mathubara M 《Talanta》1985,32(1):44-46
Inorganic and organic mercury diethyldithiocarbamates have been separated by reversedphase partition high-pressure liquid chromatography. The mercury chelates were formed by an exchange reaction with silver diethyldithiocarbamate in chloroform, in the presence of acetate buffer (pH 5.0). The inorganic and organic mercury chelates in the extract were separated within 30 min on a 3.9 x 300 mm mu-Bondapak C(18) column. EDTA (10(-4)M) in methanol-water mixture (78:22 v v ) was used as eluent at a flow-rate of 0.5 ml min .  相似文献   

4.
Wada H  Nakazawa O  Nakagawa G 《Talanta》1974,21(1):97-102
The acid dissociation constants of 1-(2-thiazolylazo)-2-hydroxy-3-naphthoic acid (TAHN) and the formation constants of Cu(II), Ni(II) and Zn(II) chelates of this dye have been determined spectrophotometrically at 25 degrees in a 5% v/v mixture of dioxan and water. The formation constants of the 1:2 chelates are smaller than those of other o-hydroxythiazolylazo compound chelates. TAHN is a satisfactory indicator for the titrations of Cu(II) and Ni(II) with EDTA.  相似文献   

5.
Yamauchi O  Tanaka H  Uno T 《Talanta》1968,15(2):177-184
Chelating abilities of several azoimidazoles containing a hydroxy and/or a dimethylanuno group, and the structures of their copper chelates, were investigated. 1-(5-Methyl-4-imidazolylazo)-2-naphthol(IAN) formed a brown-black chelate having the composition Cu(ligand)Br whereas 4-(5-methyl-4-imidazolylazo)dimethylaminobenzene (DAI) formed a reddish brown chelate Cu(ligand)(2)Br(2).2H(2)O. The contribution of the phenolic OH and the imino NH group to the binding with copper is discussed from the infrared spectra. The metal : ligand ratios of the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) chelates were determined by the method of continuous variations and their stability constants were determined at 25 degrees in 50% v v dioxane-water by the Bjerrum-Calvin method. The OH-containing azoimidazoles were found to form stable chelates with logK(1)K(2) values 14.9-25.4 and the stabilities approximately followed the Mellor-Maley stability sequence. The compound DAI, which has no OH group, formed weak chelates with Co(II), Ni(II) and Cu(II).  相似文献   

6.
The ion-pair reversed-phase chromatography of some transition metal chelates with 2-(3,5-dibromo-2-pyridylazo)-5-[N-ethyl-N-(3-sulphopropyl)amino]phenol (3,5-diBr-PAESPAP) was studied. 3,5-DiBr-PAESPAP and its V(V), Cr(III), Fe(II), Co(III) and Ni(II) chelates were retained on and the copper (II), zinc(II) and cadmium(II) chelates dissociated in an ODS column using acetonitrile/water (37+63, v/v) (pH 7.0) containing 0.01 M acetate, 0.01 M 3-(N-morpholino)propanesulphonate buffer (pH 7.0) and 0.05 M Na+ as mobile phase. The chromatograms of 3,5-diBr-PAESPAP chelates were compared with those of the chelates with 2-(3,5-dibromo- 2-pyridylazo)-5-[N-(3-sulphopropyl)amino]phenol (3,5-diBr-PASPAP),2-(5-bromo-2- pyridylazo)-5-[N-(3-sulphopropyl)amino]phenol and 2-(5-bromo-2-pyridylazo)-5-[N-propyl-N- (3-sulphopropyl)amino] phenol. With 3,5-diBr-PAESPAP the Fe(II) and Ni(II) chelates were not resolved, but resolution was achieved with 3,5-diBr-PASPAP. The calibration graphs were linear over the ranges 2.0–10.0 ng (10-μl injection) of Fe, Ni and Co and for 20–100 ng (10-μl injection) for V with 3,5-diBr-PAESPAP and 3,5-diBr-PASPAP.  相似文献   

7.
5- and 6-Uracilmethylphosphonate (5Umpa(2-) and 6Umpa(2-)) as acyclic nucleotide analogues are in the focus of anticancer and antiviral research. Connected metabolic reactions involve metal ions; therefore, we determined the stability constants of M(Umpa) complexes (M(2+)=Mg(2+), Ca(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). However, the coordination chemistry of these Umpa species is also of interest in its own right, for example, the phosphonate-coordinated M(2+) interacts with (C4)O to form seven-membered chelates with 5Umpa(2-), thus leading to intramolecular equilibria between open (op) and closed (cl) isomers. No such interaction occurs with 6Umpa(2-). In both M(Umpa) series deprotonation of the uracil residue leads to the formation of M(Umpa-H)(-) complexes at higher pH values. Their stability was evaluated by taking into account the fact that the uracilate residue can bind metal ions to give M(2)(Umpa-H)(+) species. This has led to two further important insights: 1) In M(6Umpa-H)-cl the H(+) is released from (N1)H, giving rise to six-membered chelates (degrees of formation of ca. 90 to 99.9 % with Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). 2) In M(5Umpa-H)$-cl the (N3)H is deprotonated, leading to a higher stability of the seven-membered chelates involving (C4)O (even Mg(2+) and Ca(2+) chelates are formed up to approximately 50 %). In both instances the M(Umpa-H)-op species led to the formation of M(2)(Umpa-H)(+) complexes that have one M(2+) at the phosphonate and one at the (N3)(-) (plus carbonyl) site; this proves that nucleotides can bind metal ions independently at the phosphate and the nucleobase residues. X-ray structural analyses of 6Umpa derivatives show that in diesters the phosphonate group is turned away from the uracil residue, whereas in H(2)(6Umpa) the orientation is such that upon deprotonation in aqueous solution a strong hydrogen bond is formed between (N1)H and PO(3) (2-); replacement of the hydro gen with M(2+) gives the M(6Umpa-H)-cl chelates mentioned.  相似文献   

8.
Conditions for the separation by reversed-phase liquid chromatography (LC) of V(V), Cu(II), Co(III), Pd(II), Fe(III) and Ni(II) chelates with 2-(5-bromopyridylazo)-5-diethylaminophenol (5-Br-PADAP) were studied. Six species of metal chelates were separated successfully with methanol-acetonitrile-water (72:12:16, v/v/v) containing 0.13 M NaCl and 0.29 mM cetyltrimethylammonium bromide (pH 5.0) as the mobile phase on a Nucleosil C18 (5 μm) column (250 × 4 mm i.d.).The conditions of the determination of these metal chelates are discussed. A simple and rapid method for the determination of trace amounts of V(V), Cu(II), Co(III), Pd(II) and Ni(II) simultaneously by reversed-phase LC has been developed. The detection limits are 5 × 10?12, 1 × 10?10, 3 × 10?11, 5.3 × 10?9 and 2 × 10?10 g, respectively. The method is applied to the determination of these metals in natural waters and mineral samples.  相似文献   

9.
The separation of neutral copper and nickel chelates of two representative Schiff base ligands, N,N'-ethylenebis(acetylacetoneimine) and N,N'-ethylene-bis(salicylaldimine) is reported on a column of 10-μm diameter silica. Both pairs of chelates are well resolved with good peak shape and efficiencies when the mobile phase is 4 : 1 methylene chloride—acetonitrile. The u.v. detector response at 254 nm is linear over approximately three orders of magnitude of quantity of chelate injected; the detection limits are in the low nanogram range. Qualitative and quantitative elution of undegraded chelates was demonstrated by u.v. spectrophotometry, mass spectrometry and electron spin resonance spectroscopy.  相似文献   

10.
Summary The reactions of -diketones and -ketoaldehydes with hydrazine-S-methyl carbodithioate, hydth, have been studied in the absence and presence of metal(II) ions. A series of dimeric monoligand chelates [Ni(-dikhydth-2H)]2 have been isolated. The reaction of these chelates with monodentate Lewis bases yields square planar [Ni(-dikhydth2H)B] chelates. Bisligand chelates of benzoylacetone monohydrazones [M(Bzachydth-H)2] (M=Cu or Zn) have been also synthesized, as have a series of NiII and ZnII chelates of -diketone bishydrazones of the type [M(-dik(hydth)2-2H)].  相似文献   

11.
[M(H2L)2](A)2.yH2O (where H2L: neutral piroxicam (Pir), A: Cl- in case of Ni(II) or acetate anion in case of Cu(II) and Zn(II) ions and y=0-2.5) and [M(H2L)3](A)z.yH2O (A: SO4(2-) in case of Fe(II) ion (z=1) or Cl(-) in case of Fe(III) (z=3) and Co(II) ions (z=2) and y=1-4) chelates are prepared and characterized using elemental analyses, IR, magnetic and electronic reflectance measurements, mass spectra and thermal analyses. IR spectra reveal that Pir behaves a neutral bidentate ligand coordinated to the metal ions through the pyridyl-N and carbonyl-O of the amide moiety. The reflectance and magnetic moment measurements reveal that these chelates have tetrahedral, square planar and octahedral geometrical structures. Mass spectra and thermal analyses are also used to confirm the proposed formulae and the possible fragments resulted from fragmentation of Pir and its chelates. The thermal behaviour of the chelates (TGA and DTA) are discussed in detail and the thermal stability of the anhydrous chelates follow the order Ni(II) congruent with Cu(II) Fe(II)相似文献   

12.
Chromatographic methods have been developed for the separation of the three novel biocompatible iron chelators pyridoxal isonicotinoyl hydrazone (PIH), salicylaldehyde isonicotinoyl hydrazone (SIH), and pyridoxal 2-chlorobenzoyl hydrazone (o-108) from their synthetic precursors and iron chelates. The chromatographic analyses were achieved using analytical columns packed with 5 microm Nucleosil 120-5 C18. For the evaluation of all chelators in the presence of the synthetic precursors, EDTA was added to the mobile phase at a concentration of 2 mM. The best separation of PIH and its synthetic precursors was achieved using a mixture of phosphate buffer (0.01 M NaH2PO4, 5 mM 1-heptanesulfonic acid sodium salt; pH 3.0) and methanol (55:45, v/v). For separation of SIH and its synthetic precursors, the mobile phase was composed of 0.01 M phosphate buffer (pH 6.0) and methanol (60:40, v/v). o-108 was analyzed employing a mixture of 0.01 M phosphate buffer (pH 7.0), methanol, and acetonitrile (60:20:20, v/v/v). These mobile phases were slightly modified to separate each chelator from its iron chelate. Furthermore, a RP-TLC method has also been developed for fast separation of all compounds. The chromatographic methods described herein could be applied in the evaluation of purity and stability of these drug candidates.  相似文献   

13.
Ma ZL  Wang YP  Wang CX  Miao FZ  Ma WX 《Talanta》1997,44(5):743-748
The separation and determination of Co(III), Ni(II), V(V) and Fe(III) chelates with 2-(2-benzothiazolylazo)-5-(3-sulfopropyl)aminophenol (BTASPAP) by reversed-phase ion-pair HPLC was investigated. In the presence of the oxidant potassium iodate, BTASPAP reacts with Co(III), Ni(II), V(V) and Fe(III) to form stable, negatively charged, water-soluble chelates. The chelates were separated on a C(18) siloxane bonded phase and eluted within 7 min with acetonitrile-acetate-water (36:1:63 v/v) containing 0.2 mol 1(-1) acetic acid-sodium acetate buffer (pH 3.0) and 1.0 mmol 1(-1) tetrabutylammonium bromide. The detection limits of Co(III), Ni(II), V(V) and Fe(III) at 565 nm are 0.3, 0.8, 0.3 and 1.0 ng (signal-to-noise ratio = 2), respectively. The method was applied to the determination of Co, Ni, V and Fe in four samples of standard alloys.  相似文献   

14.
An ion-pair reversed-phase high-performance liquid chromatographic method with UV-visible spectrophotometric detection is proposed for the simultaneous determination of manganese, chromium and molybdenum. By using a C18-bonded silica column, 4-(2-pyridylazo)resorcinol (PAR) chelates of Mn(II), Cr(VI) and Mo(VI) were successfully separated and accurately determined at 480 nm. Tetrabutylammonium bromide (TBAB) was used as the ion-pair reagent. Effects of pH, the buffer system, the concentration of buffer, the color developing time, the concentration of chelating reagent and the ion-pair reagent on the resolution were investigated. PAR chelates were eluted within 20 min at a flow-rate of 1.0 ml min(-1) with a methanol aqueous mobile phase, CH3OH-water (20:80, v/v), containing 1.0 x 10(-3) mol l(-1) acetate buffer (pH 6.5), 1.8 x 10(-2) mol l(-1) TBAB and 2.0 x 10(-4) mol l(-1) PAR. The feasibility of the proposed method was verified with the standard reference materials of nickel-based alloys. The nickel-based alloys were analyzed chromatographically after ammonium pretreatment. Under the optimum conditions, the detection limits for the chelates of Mn(II), Cr(VI) and Mo(VI) were 0.31, 4.2 and 4.6 ng with 100 microl injection, respectively. The accuracy of the proposed chromatographic method was verified by good agreement between the values obtained by this method and certified values.  相似文献   

15.
Ramesh A 《Talanta》1994,41(3):355-358
The chelates of Ru, Os and Pd with 4-(2'-thiazolylazo) resacetophenone oxime were separated simultaneously by HPLC using a pre-column derivatization method, at the wavelength 560 nm, on an octadecly-bonded silica stationary phase with a mobile phase methanol-water mixture (40-60 v/v) containing 40 mM of acetate buffer pH 5.0. The detection limits for Ru, Os and Pd were 2.0, 4.0 and 0.2 ng, respectively. The method has been applied successfully for the determination of metal ions in an anode slime.  相似文献   

16.
Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu2+, Co2+, Mn2+, Zn2+ and Ni2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO3.  相似文献   

17.
3-Formyl-4-hydroxyphenylguanidine hydrochloride and its Schiff base copper(II), zinc(II), and iron(III) chelates were synthesized and their inhibitory activity against bovine beta-trypsin were determined. Syntheses of Schiff base metal chelates were carried out from 3-formyl-4-hydroxyphenylguanidine, various L-amino acids, and divalent metal acetate. Their structures were established on the basis of spectroscopic evidence and elemental analysis. The inhibitory activity of these chelates against bovine beta-trypsin was determined. The guanidine-containing copper(II) and zinc(II) chelates behaved as potent competitive inhibitors of trypsin. However, similar inhibitory activity was not observed for guanidine-containing iron(III) chelates. The inhibition constants (K(i) values, ca. 10(-5) M) of guanidine-containing Schiff base copper(II) and zinc(II) chelates were slightly lower than those (ca. 10(-6) M) of the corresponding amidine-containing Schiff base chelates with regard to bovine trypsin.  相似文献   

18.
Reaction of (dppe)MCl(2)(dppe = 1,2-bis(diphenylphosphino)ethane) with 2-(N-phenyliminomethyl)phenol leads to air-stable (dppe)M(N,O) chelates (M = Pd, 1a; M = Pt, 1b). The N-4-methylphenyl derivative of 1a has been characterized by X-ray analysis. The N,O ligands are kinetically labile and exchange occurs in solution in the presence of other salicylaldimines. In the presence of anilines, a metal-mediated imine exchange process occurs. Hammett analysis reveals that the platinum complexes are sensitive to the electronics at N but not at O. Electron donating groups on the N-aryl ring stabilize the metal complex.  相似文献   

19.
Rawat PC  Gupta CM 《Talanta》1972,19(5):706-707
The complexation of In(III) and U(VI) with thiodipropionic acid has been investigated polarographically in water and water-methanol solutions at 30 +/- 0.1 degrees . All the chelates belong to polaro-graphically reversible systems. With indium(III), complexes with metal to ligand ratios of 1:1, 1:2, 1:3 and 1:4 are found at pH 4.8. Uranium(VI) is found to form three successive complexes with metal to ligand ratios of 1:1,1:2 and 1:3 in 0.1M HCl, with 0.1M KCl as supporting electrolyte.  相似文献   

20.
M4DOTA, [(2S,5S,8S,11S)-4,7,10-tris-carboxymethyl-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecan-1-yl]acetic acid (2e), and M4DOTMA, (R)-2-[(2S,5S,8S,11S)-4,7,10-tris-((R)-1-carboxyethyl)-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecan-1-yl]propionic acid (3e), are derivatives of ligand DOTA (1e) that form sterically crowded lanthanide chelates. M4DOTMA forms highly symmetric and totally rigid single Y(3+) and Yb(3+) species in which the ring substituents occupy corner positions in a square antiprismatic arrangement as shown by molecular mechanics calculations and by a quantitative interpretation of the relative magnitudes of the paramagnetic (1)H NMR shifts of dipolar origin. The NMR spectrum of YbM4DOTMA(-) displays two intense methyl peaks outside the 0-10 ppm range whose shift difference is strongly temperature dependent. YbM4DOTMA(-) (3d) could be a useful probe in magnetic resonance thermometric imaging. With only four methyl substituents on the tetraaza ring, M4DOTA forms three Yb(3+) species in solution. The methyl substituents prevent the inversion of configuration of the ethylenic groups but not of the acetate arms. Although the methyl groups are likely to preferably occupy ring corner positions, the dipolar equations do not allow one to distinguish with certainty between the two available corner (equatorial) orientations. Reliably applying the dipolar equations is less obvious than usually assumed. A single methyl substituent as in ligand MDOTA (5e) suffices to rigidify the tetraaza cycle but not the acetate arms. Racemic YbMDOTA(-) (5d) is present in solution as four totally asymmetric topomers with the methyl groups occupying either one of the two equatorial positions. A complete assignment of the solution structures on the basis of the dipolar equations is again uncertain. The nuclear magnetic relaxation dispersion curves of the Gd(3+) chelates of all the methylated DOTA ligands including DOTMA, (R)-2-[4,7,10-tris-((R)-carboxyethyl)- 1,4,7,10- tetraazacyclododecan-1-yl]propionic acid, are very similar, and intermolecular conformational processes appear to have no influence on the relaxivity of these small complexes for which the relaxation T(1) is mainly determined by the rotational correlation time (tau(r)). The hydration number of the Tb(3+) chelates measured by fluorescence decreases from DOTMA to M4DOTMA presumably because steric crowding leads to an increase of the metal-water distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号