首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A radio frequency plasma detector for capillary GC has been modified for oxygen-selective detection. Purification of the plasma gas and purging of both ends of the discharge region with helium were crucial to minimizing oxygen background emission from impurities in the plasma. With a pure helium plasma, eluting hydrocarbons released oxygen from the discharge region resulting in interfering signals on the oxygen channel. These interfering signals were efficiently reduced by using a methane-doped (0. 15%) low power RF plasma (15 W) sustained in a high make-up flow (150 mL/min). With this plasma, a 103:1 oxygen-to-carbon selectivity and a 100 pg oxygen/s detection limit were obtained. The detector was linear over three orders of magnitude. The detection system has been used to screen for oxygenated compounds in two environmental samples.  相似文献   

2.
A possible reason for the high intensity of the ion emission in the spectrum excitation in a plasma jet generated by a two-jet argon arc plasmatron was considered. The injection of a test substance as an air–solid suspension between the plasma jets (i.e., mixing of a hot plasma with a cold directional carrier-gas flow) created a radial temperature gradient and induced an intense argon influx from the dense plasma jets to the cold axial plasma zone used for analytical purposes. Favorable conditions were thus created for the analyte Penning impact ionization with argon ions. This was confirmed by the existence of a correlation between an increase in the intensity of ion lines with the carrier-gas flow rate (cooling rate) and the total energy of ionization and excitation of an element. It was shown that charge transfer from the argon ion to the analyte occurred only in the case when the total energy of the element was lower than 16 eV, i.e., lower than the ionization energy of argon plus its kinetic energy.  相似文献   

3.
The microwave-induced plasma has been widely studied as a spectrochemical excitation source. The plasma is generally maintained in a quartz tube, and energy coupled via a cavity or antenna. Previous work has shown the importance of the electron density; plasma performance is improved as the instrumental parameters are adjusted to increase the electron density. Another method to increase the electron density is to constrict the plasma. Additionally, energy losses via wall-collision would be decreased if the plasma were moved away from the walls. This communication presents such a study, in which the plasma is ‘pinched’ by the application of an external magnetic field. Preliminary results show an increase in intensity by a factor of two. The constriction also tends to improve the atomization processes. Measurements performed on plasmas which contain carbon monoxide show a greater increase in the carbon atomic emission than the carbon monoxide molecular emission.  相似文献   

4.
《Analytical letters》2012,45(13):2017-2028
Snake venom contains bioactive materials for drug development, diagnosis, and treatment. After separating and purifying the kallikrein-like enzyme (AHP-Ka) from Agkistrodon halys pallas venom for the first time, a monoclonal antibody against AHP-Ka was prepared and characterized. An indirect sandwich enzyme-linked immunosorbent assay (ELISA) based on the monoclonal antibody was developed and validated for the pharmacokinetic analysis of AHP-Ka in rat plasma. The method was calibrated using rat plasma and 1:100 dilution of plasma was selected to prepare a calibration curve to validate the precision, accuracy, and stability of the ELISA method. A good linear relationship was obtained in a working range from 3.9 ng/mL to 62.5 ng/mL with a limit of detection of 2.94 ng/mL. Intra- and inter-batch precision were less than 10%. The average recovery ranged from 94.6% to 104.4% in rat plasma at the concentrations of 5 ng/mL, 15 ng/mL, and 45 ng/mL, respectively. The ELISA method was successfully used for the pharmacokinetic study of AHP-Ka in Sprague-Dawley rat plasma after intravenous administration. The work is expected to contribute to future preclinical development of AHP-Ka.  相似文献   

5.
Calvo M  Enrich C 《Electrophoresis》2000,21(16):3386-3395
We isolated and characterized a subcellular fraction derived from the blood-sinusoidal plasma membrane of hepatocytes enriched in caveolin and containing several of the molecular components described to be present in caveolae isolated from other cell types. A morphological study by electron microscopy revealed that it was composed of caveolae-attached membrane profiles. Immunoelectron microscopy of isolated fraction showed the specific labeling of internal caveolae membranes with anti-caveolin antibody. Finally, one- and two-dimensional electrophoresis and Western blotting were used for the biochemical analysis of this new rat liver plasma membrane fraction. From the biochemical and the morphological characterization, we conclude that the caveolae-enriched plasma membrane fraction is a plasma membrane fraction, which originates from specialized regions of the sinusoidal plasma membrane, enriched in caveolae.  相似文献   

6.
A series of carbamates of the phenolic compound 1 were prepared and evaluated in vivo as its prodrug. Each carbamate was orally administered to rats, and plasma concentrations of the parent compound 1 were measured with the passage of time. We judged which carbamate was suitable for the prodrug of 1 from both the AUC value of 1 and absence of the carbamate in plasma. The AUC value of 1 after oral administration of 2b was approximately 40-fold higher than that for an administration of 1, and the bioconversion from 2b to 1 was excellent. As a whole, di-substituted carbamates resulted in higher plasma concentrations of 1 than did mono-substituted ones. However di-substituted carbamates were almost always detected in plasma. As a result, we found that the ethycarbamoyl derivative 2b demonstrates the best prodrug property in this series.  相似文献   

7.
The removal properties of diesel exhaust particles (DEP) were investigated using an engine exhaust particle size spectrometer (EEPS), field emission-type scanning electron microscopy (FE-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). DEP were treated using a dielectric barrier discharge (DBD) reactor installed in the tail pipe of a diesel engine, and a model DBD reactor fed with DEP in the mixture of N(2) and O(2). When changing the experimental parameters of both the plasma conditions and the engine load conditions, we obtained characteristic information of DEP treated with plasma discharges from the particle diameter and the composition. In evaluating the model DBD reactor, it became clear that there were two types of plasma processes (reactions with active oxygen species to yield CO(2) and reactions with active nitrogen species to yield nitrogen containing compounds). Moreover, from the result of a TOF-SIMS analysis, the characteristic secondary ions, such as C(2)H(6)N(+), C(4)H(12)N(+), and C(10)H(20)N(2)(+), were strongly detected from the DEP surfaces during the plasma discharges. This indicates that the nitrogen contained hydrocarbons were generated by plasma reactions.  相似文献   

8.
Heat transfer to a single particle exposed to a thermal plasma   总被引:1,自引:0,他引:1  
This paper is concerned with an analytical study of the heat and mass transfer process of a single particle exposed to a thermal plasma, with emphasis on the effects which evaporation imposes on heat transfer from the plasma to the particle. The results refer mainly to an atmospheric-pressure argon plasma and, for comparison purposes, an argon-hydrogen mixture and a nitrogen plasma are also considered in a temperature range from 3000 to 16,000 K. Interactions with water droplets, alumina, tungsten, and graphite particles are considered in a range of small Reynolds numbers typical for plasma processing of fine powders. Comparisons between exact solutions of the governing equations and approximate solutions indicate the parameter range for which approximate solutions are valid. The time required for complete evaporation of a given particle can be determined from calculated values of the vaporization constant. This constant is mainly determined by the boiling (or sublimation) temperature of the particles and the density of the condensed phase. Evaporation severely reduces heat transfer to a particle and, in general, this effect is more pronounced for materials with low latent heat of evaporation.  相似文献   

9.
The degree of aromaticity of toluene plasma polymer is shown to decrease with decreasing toluene flow rate into the plasma (constant rf power). Optical emission spectroscopy (OES) of the plasma is predictive; a plasma emitting a higher relative benzyl radical signal results in the deposition of a more aromatic plasma polymer. Such results have been earlier reported in the literature. However, in this work the geometry of OES observation assured that only plasma emissions from the vicinity of the deposition site were observed. Under these conditions it is found that plasma pressure must be kept constant for the predictive nature of OES results to hold.  相似文献   

10.
The synthesis of ozone from oxygen in a cylindrical ozonizer operating under surface discharge conditions with a plasma electrode was studied. The conditions of ozone synthesis were optimized. The dependence of ozone concentration and specific energy consumption on gas pressure in the plasma electrode and on distance between the coils of a corona electrode was determined. The results were compared with data obtained with the use of classical surface barrier discharge.__________Translated from Khimiya Vysokikh Energii, Vol. 39, No. 4, 2005, pp. 307–311.Original Russian Text Copyright © 2005 by Alemskaya, Lelevkin, Tokarev, Yudanov.  相似文献   

11.
In order to obtain a stable plasma and improve the performance of the torch for atomic emission spectroscopy(AES), the structure of microwave plasma torch(MPT) was analyzed. The transmission and distribution characteristics of the electromagnetic field of the torch configuration with two or three concentric tubes, as well as the metal spacer between inner and intermediate tubes with different depths were simulated with electromagnetic simulation software and verified by experiments. The results indicate that the inner tube of MPT plays an important role in strengthening the electric field intensity at the opening end of the MPT and redistributing the electromagnetic field in the whole torch by forming a double resonance configuration, and contributes to enhancing the macroscopic stability and the self-sustainment of the plasma. The stability of the plasma is proved to be excellent when the metal spacer between the inner and intermediate tubes is located at a place 20—30 mm away from the top opening of the torch. A proper location of the spacer can also avoid the formation of a static filament plasma or a rotating plasma rooted from the outer wall of the inner tube. With the help of morphological analysis, the underlying reason why MPT possesses a great tolerance to wet aerosols and air introduction was clearly made, that is, the formation region of the plasma formed with MPT is apparently separated from the reaction zone of it.  相似文献   

12.
A pencil-type floating electrode dielectric barrier discharge (FE-DBD) jet was designed to improve adhesion of composite resin to dental ceramic by plasma deposition. Among various monomers used for plasma deposition, 1,3-butadiene (BD) merged as a promising monomer. Shear bond strength (SBS) and fracture modes were evaluated with specimens prepared at various flow rates of BD. The SBS values of the experimental groups were significantly higher than that of the negative control group and approached that of the positive control group when flow rate was higher than or equal to 2 sccm. Surface characterizations of plasma polymer-deposited ceramic surfaces were performed with FTIR-ATR and XPS. The deposited polymer on the ceramic surface contained methyl and methylene groups, ether and ester groups, and carbon–carbon double bonds. Formation of plasma deposited layer from BD was verified with TEM and EDS from specimens prepared using a focused ion beam technique. Adhesion between ceramic and composite resin was enhanced with BD plasma deposition using the FE-DBD jet. The adhesion effect was stemmed from chemical reactions between C=C double bonds remaining in the plasma deposited polymer and those in the adhesive monomers as well as increased wettability due to the ester and ether groups involved in deposited polymer.  相似文献   

13.
A sensitive reversed-phase high-performance liquid chromatographic (HPLC) technique with ultraviolet detection has been developed to determine the concentration of BRB-I-28 (I), a novel antiarrhythmic agent, in dog plasma and urine. The mobile phase was acetonitrile-methanol-37.5 mM phosphate buffer, pH 6.8-triethylamine (50:50:75:0.1, v/v). The compound was extracted from dog plasma and urine with chloroform after alkalinization with sodium hydroxide. The extraction recovery was 83% from plasma and 84% from urine. Good linearity (r > 0.996) was observed throughout the ranges 0.1-12.0 micrograms/ml (plasma) and 0.1-8.0 micrograms/ml (urine). Intra- and inter-assay variabilities were less than 4%. The lower limit of quantitation was 0.08 microgram/ml in either plasma or urine. HPLC analysis of plasma and urine samples from a dog treated with I has demonstrated that the method was accurate and reproducible.  相似文献   

14.
A low-pressure gas RF plasma-treatment has been used to improve the adhesion of a synthetic vulcanized rubber to polyurethane adhesive as an environmentally friendly alternative surface treatment to the conventional chemical treatments. A sulfur vulcanized styrene-butadiene rubber (R2) containing a noticeable amount of zinc stearate and paraffin wax (both providing a lack of adhesion) in its formulation was used. Two different gases (oxygen and nitrogen) were used to generate the RF plasma, which was performed at 50 Watt for 1–15 min. The modifications produced on the R2 rubber surface by the RF plasma treatments were assessed by using advancing and receding contact angle measurements, ATR-IR spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Scanning Force Microscopy (SFM), and Scanning Electron Microscopy (SEM). Adhesion evaluation was obtained from T-peel tests of joints produced between plasma treated R2 rubber and a polyurethane adhesive. The plasma treatment produced a decrease in advancing and receding contact angle values on R2 rubber, irrespective to the gas used to generate the RF plasma. The treatment with RF plasma produced the partial removal of hydrocarbon moieties from the rubber surface and the generation of oxygen moieties. An increase in surface roughness was also produced. The degree of oxidation and the amount of hydrocarbon-rich layer removed from the R2 rubber surface was more important by treating with oxygen plasma. The treatment of rubber in oxygen plasma for 1 minute was enough to noticeably increase adhesion of R2 rubber to polyurethane adhesive. However, an extended treatment (15 min.) was needed when nitrogen plasma was applied to R2 rubber. The loci of failure in the joints produced between the plasma treated R2 rubber and the polyurethane adhesive was assessed by using ATR-IR spectroscopy. A mixed failure (partially adhesional and partially cohesive failure in the rubber) in the joints produced with plasma treated R2 rubber joints was always obtained.  相似文献   

15.
A rapid and sensitive method to assay torasemide in plasma was developed using a simple liquid-liquid extraction technique followed by high-performance liquid chromatography. Torasemide and the internal standard furosemide were extracted from 0.5 mL of plasma using ethyl acetate in the presence of 0.1M HCl. The analysis of the extracts was performed on a monolithic silica column with ultraviolet spectrophotometric detection. The calibration curve was linear over the concentration range of 0.05-5 μg mL?1 in plasma. Recoveries were reasonable for routine analyses (>80%); the limit of quantification was 0.05 μg mL?1 with a signal-to-noise ratio of 5. The coefficient of variation of the assay precision was less than 6.1%, and the accuracy exceeded 98%. This method was used to measure the torasemide concentration in plasma from healthy subjects after a single 20-mg oral dose of torasemide. This method provides a very simple, sensitive, and accurate way to determine torasemide concentrations in plasma.  相似文献   

16.
Mass spectrometric plasma analysis for biomarker discovery has become an exploratory focus in proteomic research: the challenges of analyzing plasma samples by mass spectrometry have become apparent not only since the human proteome organization (HUPO) has put much emphasis on the human plasma proteome. This work demonstrates fundamental proteomic research to reveal sensitivity and quantification capabilities of our Peptidomics technologies by detecting distinct changes in plasma peptide composition in samples after challenging healthy volunteers with orally administered glucose. Differential Peptide Display (DPD) is a technique for peptidomics studies to compare peptides from distinct biological samples. Mass spectrometry (MS) is used as a qualitative and quantitative analysis tool without previous trypsin digestion or labeling of the samples. Circulating peptides (< 15 kDa) were extracted from 1.3 mL plasma samples and the extracts separated by liquid chromatography into 96 fractions. Each fraction was subjected to MALDI MS, and mass spectra of all fractions were combined resulting in a 2D-display of > 2,000 peptides from each sample. Endogenous peptides that responded to oral glucose challenge were detected by DPD of pre-and post-challenge plasma samples from 16 healthy volunteers and subsequently identified by nESI-qTOF MS. Two of the 15 MS peaks that were significantly modulated by glucose challenge were subsequently identified as insulin and C-peptide. These results were validated by using immunoassays for insulin and C-peptide. This paper serves as a proof of principle for proteomic biomarker discovery down to the pM concentration range by using small amounts of human plasma.  相似文献   

17.
An aqueous two-phase system, based on the cloud point phenomenon, was proposed for blood plasma albumin depletion prior to gel electrophoresis (SDS-PAGE) analysis. Albumin removal was evaluated using a mixture of Triton® X-114 and SDS. Variables affecting phase separation and the partition coefficient (K), such as pH (from 5.0 to 7.6) and salt composition, were first optimized to carry out phase separation at room temperature and to promote albumin removal (15 min with ca. 95% efficiency) to the surfactant-rich phase, in a global process that results in reduction of 12% α-helix structures, confirmed through circular dichroism analysis. Gel electrophoresis analyses were carried out to compare crude human plasma composition with human plasma submitted to the cloud point procedure as well as the same plasma submitted to the separation of albumin using a commercially available system based on a chromatographic affinity column. The cloud point extraction procedure allowed identification of 18 protein bands present in the surfactant-poor phase, resulting in a more detailed electrophoretic profile, when compared with crude plasma (10 protein bands).  相似文献   

18.
A well-characterized flame-assisted plasma was developed to understand the role of flow nonuniformities and plasma/wall interactions in plasma devices for use in validation of laser-based Doppler shift spectroscopic methods. A hydrogen/oxygen capillary diffusion flame burner was used as a plasma source, with barium seeded into the reactants to provide a source of ions and electrons. For analysis the plasma was assumed to be a stationary, partially ionized, collision dominated, thermal plasma consisting of barium ions, electrons, and neutrals between two parallel-plate electrodes. The plasma was examined in terms of the continuum equations for ions and electrons, together with Poisson's equation to predict spatial profiles of electron and positive ion density and potential as functions of applied potential. First an analytic solution based on constant plasma properties and negligible difusion was introduced. The model was then extended by including effects of diffusion and variable plasma properties. Experimentally, current/voltage characteristics of the plasma were measured conventionally, relative ion concentration and temperature were measured with laser-induced fluorescence, and local potential distribution was measured using an electrostatic probe. The diffusionless theory predicted well the bulk behavior of the plasma, but not the correct spatial distributions of ion concentration and potential. The extended model produced a more satisfactory fit to the data. At conditions of 1.4 equivalence ratio, 70 torn pressure, 300 ppm seed concentration, and 100–400 V applied potentials, electric fields of the order of 102, 103 V/cm were observed near the powered electrode, and of few tens of V/cm in the hulk of tire plasma. The field strength in the sheath ensures the operation of the Doppler shift diagnostics, once the recommendations tor LIF signal detectability are fulfilled.  相似文献   

19.
A reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the determination of neomycin in plasma and urine. The plasma was deproteinated with trichloroacetic acid and centrifuged. The supernatant was mixed with ion-pair concentrate and centrifuged again. The resultant supernatant was analyzed by HPLC. Urine was centrifuged to remove debris, if any, mixed with ion-pair concentrate and analyzed directly by HPLC. The HPLC conditions consisted of an ion-pairing mobile phase, a reversed-phase column, post-column derivatization with o-phthalaldehyde (OPA) reagent and fluorescence detection. The overall average recovery of neomycin was 97 and 113% from plasma spiked at 0.25-1.0 micrograms/ml, using standard curves prepared in plasma extract and in water, respectively, and 94% for urine spiked at 1-10 micrograms/ml using a standard curve prepared in water. The method was used to detect neomycin in plasma and urine obtained from animals injected intramuscularly with neomycin. Various pharmacokinetic parameters of neomycin were also determined from its profile of plasma concentration versus time.  相似文献   

20.
The present study involves both experimental investigation and mathematical modeling of the diffusion process of a cold gas injected into a main plasma stream. The cold gas (nitrogen or helium) was injected axially through a water cooled tube located along the centerline of an induction plasma torch. The 2-D distribution of the temperature, velocity and concentration profiles in the plasma flow were measured using enthalpy probe techniques. The results are compared with the predictions of a 2-D, LTE, turbulent mathematical model. The effects of the nature (composition) of the injected gas and its mass flow rate are investigated. The enthalpy probe measurements and the predictions of the model are in good agreement. The effective (turbulent and molecular) transport properties are estimated from a comparison of the measured and calculated profiles of the temperature, velocity and concentration fields. This study sheds light on the basic diffusion mechanisms involved in a widely used configuration of induction plasma reactors, i.e. in which the material to be treated is injected axially into the plasma, through a central water cooled tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号