首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introducing sodium sulfide (about 10?5 M) into acidic thiocarbamide solutions reduces the gold reduction overpotential. The reaction rate passes through a maximum at a potential of 0.1 V. The overpotential depends on the sulfide ion concentration and the time of electrode exposure to solution prior to the beginning of scanning. Transients of potential measured on a renewable gold electrode in thiocarbamide electrolytes containing catalytically active species served as the basis for calculations of the coefficient of trapping of sulfide ions by the growing gold deposit. The kinetics of gold electrodeposition at fixed surface coverages with adsorbed sulfide ions θ is studied. It is shown that at θ = const, the dependence of the reaction rate on the overpotential is described by the Tafel equation. It is shown that with an increase in θ, the effective values of exchange current and transfer coefficient increase from i 0 ≌ 10?5 A/cm2 and α ≌ 0.25 in pure solutions to α ≌ 0.5 and i 0 ≌ 10?4 A/cm2 at θ ≥ 0.3 and then remains virtually unchanged. The reaction order decreases in the absolute magnitude, remaining negative. Thus for θ ≌ 0, p k = ?logi/?logc = ?1, whereas for θ ≥ 0.3, p k = ?0.3. A possible explanation is proposed for the catalytic effect of the sulfide ion adsorption on the mechanism of the gold reduction from acidic thiocarbamide electrolytes.  相似文献   

2.
Effective values of reaction order with respect to ligand P, transfer coefficient α, and exchange current i 0 at constant silver surface coverages θ by sulfide ions are measured. The employed solutions contained from 0.4 to 0.05 M thiocarbamide, 0.5 M HClO4, 10?4 M AgNO3, and from 10?5 to 10?4 M Na2S. It is shown that the exchange current grows approximately linearly from 10?5 to 1.5 × 10?4 A/cm2 at θ increase in the range from zero to 0.8, while α and P values grow negligibly in the ranges of 0.4–0.45 and 0.9–1.1, accordingly. The obtained results are compared with the data of similar studies of the gold behavior in acidic thiocarbamide solutions. The possible reasons for the different effects of sulfide ion chemisorption on the anodic dissolution of gold and silver in the studied solutions are discussed.  相似文献   

3.
Adding a microscopic quantity of sodium sulfide (~10?5 M) into acid solutions of thiourea leads to a dramatic acceleration of anodic dissolution of gold. The acceleration effect is greater at larger thiourea concentrations (c) and longer times of the electrode contact with solution (Δt) before the beginning of measurements. The effect diminishes after a polarization curve passes through a maximum at E ? 0.5 V. Regularities of the gold dissolution in a solution containing 0.1 M thiourea and 0.5 M H2SO4 at given values of c and Δt are studied with use made of the technique of renewing the electrode surface by cutting off a thin surface layer of metal. The discovered regularities are given an explanation which is based on the assumption that the dissolution process is catalyzed by sulfide ions adsorbed on the electrode surface.  相似文献   

4.
Chronoamperograms for gold in solutions containing 0.1 M thiourea, 0.5 M H2SO4, and catalytically active sulfide ions at the concentration c 1 from 1 × 10?5 to 4 × 10?5 M are obtained at different potentials with the aid of an automated setup intended for renewing the electrode surface directly in the solution by cutting off a thin surface layer of the metal. It is shown that the results of measurements of the current practically coincide at a constant value of the product c 1 t, where t is the time period elapsed after the renewal of the electrode surface. Such a coincidence testifies to a diffusion nature of processes that hamper accumulation of sulfide ions at the gold surface. This fact permitted the use of a procedure developed previously for the calculation of polarization curves at constant values of surface coverage θ by catalytically active ions. At θ = const, the voltammetric curves for gold in sulfide-containing thiourea solutions are shown to correspond to the Tafel equation. With the surface coverage increasing, the effective values of the exchange current i 0, transfer coefficient α, and anodic reaction order with respect to thiourea P a increase from the values i }~ 10?5 A cm?2, α }~ 0.12, and P a = 0.2, which are characteristic of pure solutions, to 2 × 10?4 A cm?2, α }~ 0.5, and P a = 1.1 (at θ }~ 0.5). An interpretation to the established regularities is given.  相似文献   

5.
Kinetics of silver electrodeposition in the presence of sulfide ions is studied on electrodes renewed by cutting off a thin surface layer, at a controlled time of contact of the “fresh” surface with the electrolyte. Solutions containing 10?2 M AgNO3, 0.1 M thiocarbamide, 0.5 M HClO4, and from 2 × 10?6 to 1.5 × 10?5 M Na2S are studied. It is shown that under the studied conditions, the effect of silver electrodeposition on the surface concentration of sulfide ions is insignificant. As the concentration of sulfide ions in solution and their coverage on the electrode surface θ increase, the cathodic polarization decreases. Tafel curves plotted for θ = const are used in estimating the exchange current i 0 and the transfer coefficient α. It is shown that α ≈ 0.5 and weakly depends on θ, whereas the exchange current increases with the increase in θ by an approximately linear law from 10?5 A/cm2 at θ ? 0 to 10?4 A/cm2 at θ = 0.43. The obtained data are compared with the results of kinetic studies of silver anodic dissolution in similar solutions.  相似文献   

6.
It is shown that the gold dissolution in thiocarbamide electrolytes containing sulfide ions in the pH range from 1 to 4 proceeds with a current efficiently of almost 100%, and a change in solution acidity has a weak effect on the process. The oxidation of thiocarbamide to formamidine disulfide proceeds at the potentials around 1.1 V and depends on the pH of solution. When the pH value is raised, the thiocarbamide oxidation potential shifts in the negative direction and approaches the potential of gold dissolution. It is found that, in the absence of catalytically active species, the gold dissolution rate in thiocarbamide solutions in the pH range from 6 to 10 is vary low. At these pH values, as well as in the acidic solutions, an addition of less than 10−4 M sulfide ions to thiocarbamide electrolyte accelerates the gold dissolution at the potentials about 0.6 V. It is shown that sulfide ions in the concentration above 10−4 M inhibit the process. At pH 11, the gold dissolution proceeds also with no special addition of sulfide ions. This is associated with the formation of sulfide ions as a result of accelerated decomposition of thiocarbamide and formamidine disulfide with increasing pH value. It is found that in the pH range from 12 to 13, the processes of gold dissolution and thiocarbamide oxidation are inhibited as a result of the formation of passive film on the electrode surface. Probably, the film consists of elemental sulfur.  相似文献   

7.
The effect of potential on the rate of gold dissolution in the cyanide solutions in the presence of sulfide ions is studied. The dependences of current on the time after the electrode surface renewal were measured under the potentiostatic conditions. The majority of experiments were performed in the solution of the following composition, M: 0.1 KCN, 0.1 KOH, 0.01 KAu(CN)2, (1.5–2) × 10?5 Na2S at 23°C. It is shown that, at the potentials more positive than ?0.1 V (NHE), the rate of gold dissolution starts to increase as soon as the surface is renewed, which is associated with high-rate chemisorption of catalytically active sulfide ions. At E < ?0.1 V, the chemisorption proceeds slowly, and a considerable increase in the current takes much time. Therefore, in the potentiodynamic measurements, at E < ?0.1 V, no catalytic effect of sulfide ions is observed. When the ratio between the concentrations of sulfide and cyanide ions is decreased, the potential, which, by convention, bounds the aforementioned ranges, shifts in the positive direction. Plausible explanations for these regularities are proposed.  相似文献   

8.
An osmium redox polymer PVI-PAA-dmeOs is electrodeposited onto a gold electrode by using repetitive double potential step chronoamperometry. The resulting film is permeable to the substrates and products of the catalyzed reaction, and permits fast electron transfer. The frequency variation during the potential step process is recorded using electrochemical quartz-crystal microbalance (EQCM). A reaction mechanism for electrochemical deposition of the osmium redox polymer is proposed. The characteristics of the PVI-PAA-dmeOs film are investigated by EQCM and cyclic voltametry. The results show the hydrated osmium PVI-PAA-dmeOs film to exhibit excellent electrocatalytic activity towards the oxidation of epinephrine. At a bare gold electrode, the epinephrine oxidation current increases greatly and the oxidation peak potential negatively shifts to about 0.16 V (Ag/AgCl) at the film-modified electrode. Under optimal conditions, amperometric measurements are performed at 0.18 V and the current response of epinephrine changes linearly with its concentration from 5 × 10?7 to 1 × 10?4 mol l?1. A detection limit of 1.5 × 10?7 mol l?1 (S/N = 3) is obtained.  相似文献   

9.
The potential dependence of the gold dissolution rate in alkali-cyanide solutions with and without 1.5 × 10-5 M T1NO3 is studied using the technique of the electrode surface renewal prior to taking measurements. The thallium ions accelerate the gold dissolution at potentials below 0.2 V and inhibit it at more positive potentials. The effect depends on the time the electrode is in contact with solution before the measurements, the potential scan rate, and concentrations of KCN and KOH. Possible approaches to interpreting the discovered phenomena are suggested.  相似文献   

10.
The effect of TlNO3 additions in the concentration (c 1) range from 5 × 10?6 to 1 × 10?4 M on the anodic dissolution of gold in sodium thiosulfate solutions with the concentration (c 2) from 0.005 to 0.2 M is studied by voltammetry on the electrode surface renewed by cutting off a thin metal layer immediately in solution and also by the quartz-crystal microbalance method. For c 2 = 0.2 M, as c 1 increases from 5 × 10?6 to 1 × 10?4 M, the gold anodic dissolution rate is observed to increase from 0.02 (in the absence of TlNO3) to 0.75 mA/cm2 for c 1 = 7.5 × 10?5 M according to a nearly linear law. The dissolution accelerates because the effective values of the transfer coefficient and the exchange current density increase from 0.2 and 4 ??A/cm2 (in the absence of TlNO3 admixtures) to 0.47 and 35 ??A/cm2 (for c 1 = 1 × 10?4), respectively. Experiments with the renewal of the electrode surface in the course of electrolysis suggest that the gold dissolution is catalyzed in the presence of thallium ions by the adsorption mechanism and also as the result of the mixed kinetics of their adsorption on the electrode surface.  相似文献   

11.
Regularities of silver dissolution in acid thiocarbamide electrolytes are studied. The kinetics of the process is shown to be severely affected by the admixture of hydrogen sulfide molecules that form upon inserting sodium sulfide or accumulate in electrolyte with the passage of time elapsed since its preparation. Catalytic effect increases with increasing length of time of the electrode’s contact with solution prior to the beginning of experiment or following an increase in the concentration of sulfide ions. Experiments with the surface renewed in the course of potential scans show that the catalytic effect is connected with the adsorption of sulfide ions on an interface. At large values of the surface coverage with sulfide ions, the dissolution rate increases so much that the dissolution process starts to be limited largely by the process of supply of thiocarbamide molecules toward the electrode surface.  相似文献   

12.
The peculiarities of the effects of upd thallium, lead, bismuth, and mercury on the dissolution rates of gold and silver in cyanide electrolytes are compared. In general, they feature the abrupt acceleration of the dissolution of gold and, to a lesser extend, silver in the chemisorption range of mentioned ions. As the potential increases, the gold dissolution rates passes through a maximum the height of which is comparable with the limiting current of this process associated with limitations in the delivery of cyanide ions to the electrode surface. The current decay after the maximum is due to desorption of catalytically active adatoms. The chemisorption rate of thallium, lead, and bismuth ions at potentials more negative than the current peak is controlled by their diffusion to the gold surface, whereas the chemisorption rate of mercury is controlled by the adsorption kinetics. With the increase in the surface coverage with adatoms θ, the catalytic activity of all considered adatoms passes through a maximum. The sharp increase in the effective transfer coefficient in the presence of these adatoms makes the main contribution into the acceleration of the gold dissolution, while the increase in the exchange current has a smaller effect. The chemisorption of mentioned atoms on gold not only accelerates the dissolution but also changes its mechanism. For gold dissolution, the catalytic activity of upd thallium, lead, and bismuth increases in the following sequence: Tl ? Pb < Bi and the effect is additive in their simultaneous presence. For silver, the increase in the exchange current makes the main contribution into the acceleration of dissolution, whereas the transfer coefficient and the reaction order with respect to the ligand change insignificantly. Explanation of the observed peculiarities is given.  相似文献   

13.
The effect of the gold surface renewal on the polarization curve is studied at various gold dissolution stages in electrolytes containing 0.1 M thiourea, (1.4–4.0) 10?5 M sodium sulfide, and 0.5 M sulfuric acid, at 20°C. The behavior of the curves after the cutting-off of a surface layer of gold in the potential region where a current decay is observed (i.e. passivation of the process) and the dependence of the current in the maximum of a polarization curve on the thiourea concentration are explained by “deactivation” of catalytically active adsorbed sulfide ions.  相似文献   

14.
Electrochemical quartz crystal microbalance, combined with cyclic voltammetric, chronoamperometric, and potentiostatic measurements, was used to study electrodeposition/dissolution phenomena at a gold electrode in solutions containing Na2S. Spontaneous, open-circuit deposition processes as well as dissolution of the deposits in sulfide-free solutions have also been investigated. The potential range, scan rate, sulfide concentration, and pH have been varied. The results of the piezoelectric nanogravimetric studies are elucidated by a rather complex scheme involving underpotential deposition of sulfur at approximately −0.85 V vs. sodium calomel electrode, reductive dissolution of the deposited sulfur-containing layer at potentials more negative than approximately −0.9 V, and formation of a sulfur-containing multilayer at potentials more positive than −0.2 V. During the reduction of sulfur deposited on Au, a mass increase due to the formation of polysulfide species in the surface layer, accompanied by incorporation of Na+ counterions, can be observed that starts at approximately −0.4 V. This is a reversible process, i.e., during the reoxidation, counterions leave the surface layers. Frequency excursions during the electroreduction and reoxidation processes reveal existence of several competitive dissolution–deposition steps. Spontaneous interaction between Au and HS species results in a surface mass increase at the open-circuit potential, and it also manifests itself in the substantial decrease of the open-circuit potential after addition of Na2S to the supporting electrolyte.  相似文献   

15.
 The specific adsorption of 36Cl-labelled Cl ions and 35S-labelled HSO4 ions was studied in 1 mol dm−3 HClO4 supporting electrolyte in the presence of Cd2+ ions at a gold support over a wide potential range corresponding to electrodeposition, alloy formation, underpotential deposition of Cd species and existence of an adatom-free surface. The distinct sections in the potential dependence of the adsorption of anions together with the potential versus time curves obtained under open circuit conditions reflect the changes in the state of the electrode surface, the dissolution of the bulk Cd phase and the slow elimination of Cd species from the Cd/Au alloy. Received: 16 March 1999 / Accepted: 5 May 1999  相似文献   

16.
The kinetics of hydrogen evolution on a copper electrode in acetic acid solutions is studied by the method of linear potential sweep. At рН < 2.5, double current peaks are observed with the height directly proportional to both √v (v is the potential sweep rate) and the total concentration of proton donors and acceptors. Upon the transition from the copper electrode to the platinum electrode, the overpotential of this process considerably decreases, but the shape of current peaks remains unchanged. The analysis of kinetics of acetic acid dissociation points to the high degree of lability of this system, which allows the relationship between the surface concentrations of its components to be expressed through the corresponding equilibrium constants. At certain potentials, significant changes in the surface pH are observed, which favor the appearance of an additional current peak in the cathodic chronovoltammogram. The Tafel plots normalized with respect to the surface concentration of hydrogen ions allow the following values of kinetic parameters to be obtained: i0 ~ 0.3 nA/cm2 and αc = 0.75. Chronovoltamograms simulated with the use of these values demonstrate double maximums which adequately agree with experimental data.  相似文献   

17.
The effect of TlNO3 additive on the gold dissolution in the thiosulfate electrolyte is studied by using chronoammetry on the electrode, which was renewed by cutting-off a thin surface metal layer immediately in the solution. It is shown that the ascending branches of anodic polarization curve shift in the negative direction with increasing time of electrode exposure prior to the onset of potential scan Δt (from 0 to 120 s) to the solution containing thallium(I) ions. It is shown that solution stirring and a twentyfold increase in the concentration of thallium ions have a weak effect on the current transients. It is found that the duration of gold dissolution current transients decreases significantly with a potential shift in the positive direction. Based on this data, a mechanism of the effect of thallium(I) ions on the gold dissolution rate is proposed.  相似文献   

18.
It is shown that at potentials E < 0.5 V (NHE) gold undergoes practically no dissolution in thiourea solutions containing no catalytically active species. The dissolution at a perceptible rate (> 100 μA cm?2) starts at E ≥ 0.65 V, with the primary process being the oxidation of thiourea, which gives rise a current peak at E ? 1.0 V. The thiourea oxidation at E ≥ 1.1 produces the appearance of catalytically active species, which drastically accelerate the gold dissolution process in the potential region extending from a steady-state value to 0.6 V, where the current efficiency for gold approaches 100% and a peak emerges at E ? 0.55 V. The peak’s height is commensurate with the value of the limiting diffusion current associated with the ligand supply. The species in question make no discernible impact on the thiourea oxidation process. Formamidine disulfide, which forms during the anodic oxidation of thiourea or which is added in solution on purpose, exerts no noticeable catalytic influence on the anodic gold dissolution. The catalytically active species is presumably the S2? ion, product of decomposition and deep oxidation of thiourea and formamidine disulfide. Indeed, adding sulfide ions in solution has a strong catalytic effect on the gold dissolution, whose character is identical to that of the effect exerted by products of anodic oxidation of thiourea at E ≥ 1.1 V μA cm?2.  相似文献   

19.
Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla- tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode potential (e), the surface coverage of carbon monoxide (x), and adsorbed water (y). The chemical reactions and electrode potential were coupled together through the rate constant ki = exp(ai(e ? ei)). The analysis to the established model discloses the following: there are different kinetics be- haviors in different ranges of current densities. The chemical oscillation in methanol electrooxidation is assigned to two aspects, one from poison mediate CO of methanol electrooxidation, which is the in- duced factor of the chemical oscillation, and the other from the oxygen-containing species, such as H2Oa. The formation and disappearance of H2Oa deeply depend on the electrode potential, and directly cause the chemical oscillation. The established model makes clear that the potential oscillation in methanol electrooxidation is the result of the feedback of electrode potential e on the reactions in- volving poison mediates CO and oxygen-containing species H2Oa. The numerical analysis of the estab- lished model successfully explains why the potential oscillation in methanol galvanostatic oxidation on a Pt electrode only happens in a certain range of current densities but not at any current density.  相似文献   

20.
Six experiments are presented to highlight important features of aluminium dissolution when used in electrocoagulation procedure employed to remove oily contaminations from water. First, using a common oil-in-water emulsion: diluted milk, we show that the electrochemically generated coagulant ions are active only in the first few seconds following their generation—hence, the electrocoagulation cells’ construction should promote the mixing of the nascent Al colloid with the water phase. For this reason, the use of the narrow-gap cells is suggested. Second, in experiments with Al-Al electrode pairs and dilute, neutral, unbuffered, aqueous solutions we (i) estimate the maximum amount of Al dissolution on the cathode and (ii) show how the rate of Al dissolution changes with frequency if the cell voltage polarity is alternating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号