首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The facile one‐pot reaction of the stable N‐heterocyclic silylene LSi: 1 (L?(ArN)C(?CH2) CH?C(Me)(NAr), Ar=2,6‐iPr2C6H3) with Me2Zn, Me3Al, H3Al‐NMe3, and MeLi has been investigated. The silicon(II) atom in 1 is capable of insertion into the corresponding M? C and Al? H bonds under very mild reaction conditions. Thus, Me2Zn furnishes the bis(silyl) zinc complex LSi(Me)ZnSi(Me)L 2 as the sole product, irrespective of the molar ratio of the starting materials applied. Moreover, the reactions of 1 with Me3Al, H3Al‐NMe3, and MeLi lead directly to the 1,1‐addition products LSi(Me)(Al(thf)Me2) 3 , LSi(H)(AlH2(NMe3)) 4 , and LSi(Me)Li(thf)3 5 , respectively. All new compounds 2 – 5 were fully characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses, and single‐crystal X‐ray diffraction analyses.  相似文献   

2.
The diaminebis(aryloxido) ligand precursors H(2)L(1) and H(2)L(2) [H(2)L(1) = Me(2)NCH(2)CH(2)N(CH(2)-4-CMe(2)CH(2)CMe(3)-C(6)H(3)OH)(2); H(2)L(2) = Me(2)NCH(2)CH(2)N(CH(2)-4-Me-C(6)H(3)OH)(2)] were synthesized by a straightforward single-step Mannich condensation. Their reactions with 2 molar equivalents of MeLi in thf afforded [Li(4)(μ-L-κ(4)O,N,N,O)(2)(thf)(2)] (1a, L(1); 1b, L(2)) and unexpectedly small amounts (~9%) of [Li(6)(μ-L-κ(4)O,N,N,O)(2)(μ(3)-Cl)(2)(thf)(4)]·thf (2a·thf; L(1); 2b·thf, L(2)). Stoichiometric reactions of LiCl, MeLi and ligand precursors H(2)L led to the formation of 2a and 2b in high yield (~80%). All compounds were characterized by chemical and physical techniques including X-ray crystallography for H(2)L(1), H(2)L(2), 1b, 2a and 2b.  相似文献   

3.
The first donor-stabilized silylated silicoxonium species [LSi=O-SiMe(3)](+) (L=(RN)C(=CH(2))CH=CMe(NR), R=2,6-iPr(2)C(6)H(3)) have been synthesized from the reaction of the dmap-supported (dmap=p-dimethylaminopyridine) silanone complex [LSi(dmap)=O] (1) with trimethylsilyl halides. Although the reaction with Me(3)SiCl leads directly to the Si=O addition product [LSi(Cl)OSiMe(3)] (2), the ionic silicoxonium bromide [L(dmap)Si=O-SiMe(3)](+)Br(-) (3) can be obtained as a primary product of the reaction with Me(3)SiBr, which affords [LSi(Br)OSiMe(3)] (4) with release of the dmap ligand at room temperature in THF. In the case of Me(3)SiI, the reaction furnishes the silicoxonium iodide [L(dmap)Si=O-SiMe(3)](+)I(-) (5) as the most stable species. Compounds 2-5 were isolated and fully characterized through multinuclear NMR spectroscopy, mass spectrometry, elemental analyses, and single-crystal X-ray diffraction analyses.  相似文献   

4.
The compounds [K((mu-N(SiMe3)C(Ph))2CH)(thf)2]infinity 1, [K(mu-N(SiMe3)C(Ph)C(H)C(Ph)NH)L]2 [L = (thf)2 2, tmen 3], [K(mu-NSi(Me)2C(Ph)C(H)C(Ph)N)(thf)3]2 4 and [K(N(H)C(Ph))2CH](thf)0.5 5 have been prepared from K[(N(SiMe3)C(Ph))2CH] and the X-ray structures of 1-4 are reported.  相似文献   

5.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

6.
Catalytic dehydrocoupling of phosphines was investigated using the anionic zirconocene trihydride salts [Cp*2Zr(mu-H)3Li]3 (1 a) or [Cp*2Zr(mu-H)3K(thf)4] (1 b), and the metallocycles [CpTi(NPtBu3)(CH2)4] (6) and [Cp*M(NPtBu3)(CH2)4] (M=Ti 20, Zr 21) as catalyst precursors. Dehydrocoupling of primary phosphines RPH2 (R=Ph, C6H2Me3, Cy, C10H7) gave both dehydrocoupled dimers RP(H)P(H)R or cyclic oligophosphines (RP)n (n=4, 5) while reaction of tBu3C6H2PH2 gave the phosphaindoline tBu2(Me2CCH2)C6H2PH 9. Stoichiometric reactions of these catalyst precursors with primary phosphines afforded [Cp*2Zr((PR)2)H][K(thf)4] (R=Ph 2, Cy 3, C6H2Me3 4), [Cp*2Zr((PPh)3)H][K(thf)4] (5), [CpTi(NPtBu3)(PPh)3] (7) and [CpTi(NPtBu3)(mu-PHPh)]2 (8), while reaction of 6 with (C6H2tBu3)PH2 in the presence of PMe3 afforded [CpTi(NPtBu3)(PMe3)(P(C6H2tBu3)] (10). The secondary phosphines Ph2PH and (PhHPCH2)2CH2 also undergo dehydrocoupling affording (Ph2P)2 and (PhPCH2)2CH2. The bisphosphines (CH2PH2)2 and C6H4(PH2)2 are dehydrocoupled to give (PCH2CH2PH)2)(12) and (C6H4P(PH))2 (13) while prolonged reaction of 13 gave (C6H4P2)(8) (14). The analogous bisphosphine Me2C6H4(PH)2 (17) was prepared and dehydrocoupling catalysis afforded (Me2C6H2P(PH))2 (18) and subsequently [(Me2C6H2P2)2(mu-Me2C6H2P2)]2 (19). Stoichiometric reactions with these bisphosphines gave [Cp*2Zr(H)(PH)2C6-H4][Li(thf)4] (22), [CpTi(NPtBu3)(PH)2C6H4]2 (23) and [Cp*Ti(NPtBu3)(PH)2C6H4] (24). Mechanistic implications are discussed.  相似文献   

7.
Anilido phosphinimino ancillary ligand H(2)L(1) reacted with one equivalent of rare earth metal trialkyl [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] (Ln=Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH(3))(3)(THF)] (1 a: Ln=Y; 1 b: Ln=Lu). In this process, deprotonation of H(2)L(1) by one metal alkyl species was followed by intramolecular C--H activation of the phenyl group of the phosphine moiety to generate dianionic species L(1) with release of two equivalnts of tetramethylsilane. Ligand L(1) coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex l a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL(1))LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C--H activation of the phenyl group is reversible. When 1 a was exposed to moisture, the hydrolyzed dimeric complex [{(HL(1))Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] with amino phosphine ligands HL(2-R) gave stable rare earth metal bis-alkyl complexes [(L(2-R))Ln{CH(2)Si(CH(3))(3)}(2)(thf)] (4 a: Ln=Y, R=Me; 4 b: Ln=Lu, R=Me; 4 c: Ln=Y, R=iPr; 4 d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4 a and 4 c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L(2-R))Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5 a: R=Me; 5 b: R=iPr). Complexes 1 a,b and 4 a-d initiated the ring-opening polymerization of d,l-lactide with high activity to give atactic polylactides.  相似文献   

8.
The oxygen-bridged, silicon-substituted alkane {(Me3Si)2CH(SiMe2)}2O (1) may be prepared by the reaction of {(Me3Si)2CH}Li with ClSiMe2OSiMe2Cl in refluxing THF. Similarly, the alkane {(Me3Si)(Me2MeOSi)CH(SiMe2CH2)}2 (2) is readily accessible from the reaction between {(Me3Si)(Me2MeOSi)CH}Li and ClSiMe2CH2CH2SiMe2Cl under the same conditions. Compound 1 reacts with two equivalents of MeK to give the polymeric complex [[{(Me3Si)2C(SiMe2)}2O]K2(OEt2)]infinity [5(OEt2)] after recrystallisation. Treatment of 2 with two equivalents of either MeLi or MeK gives the corresponding complexes [{(Me3Si)(Me2MeOSi)C(SiMe2CH2)}2Li][Li(DME)3] [7(DME)3] and [{(Me3Si)(Me2MeOSi)C(SiMe2CH2)}2K2]n (8), respectively, after recrystallisation. Treatment of the alkane (Me3Si)2(Me2MeOSi)CH with one equivalent of MeK gives the polymeric complex [{(Me3Si)2(Me2MeOSi)C}K]infinity (3). These compounds have been identified by 1H and 13C{1H} NMR spectroscopy and elemental analyses and compounds 5(OEt2), 7(DME)3 and 3 have been further characterised by X-ray crystallography. Compound 7(DME)3 crystallises as a solvent-separated ion pair, whereas 5(OEt2) and 3 adopt polymeric structures in the solid state.  相似文献   

9.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

10.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

11.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

12.
The coordination preferences of the tetradentate Schiff base, N,N'-ethylenebis(acetylacetoimine), H(2)L, with a variety of group 13 precursors, led to the formation of a series of mono and binuclear products. The reaction of H(2)L with AlMe(3) and Me(2)GaCl afforded the binuclear complexes, [L{Al(Me)(2)}(2)] 1 and [H(2)L{GaCl(Me)(2)}(2)], 3, the latter an adduct of the neutral ligand. Treatment of 1 with iodine generated the cationic Al(III) complex, [LAl(thf)(2)]I, 2, while the addition of n-BuLi to H(2)L, followed by reaction with GaCl(3) and InCl(3) led to an ionic complex [{LGaCl}(2)(μLi)]GaCl(4), 4, an In(III) dimer, [LInCl](2), 5 and monomeric [LInCl(thf)], 6. In contrast, the reaction of [In{N(SiMe(3))(2)}(3)] with H(2)L yielded a homoleptic, air stable, indium complex, [L(3)In(2)], 7. All products were definitively characterized by X-ray crystallography and their structures confirmed by pertinent spectroscopic techniques.  相似文献   

13.
The reactions of dialumane [L(thf)Al? Al(thf)L] ( 1 , L=[{(2,6‐iPr2C6H3)NC(Me)}2]2?) with stilbene and styrene afforded the oxidation/insertion products [L(thf)Al(CH(Ph)? CH(Ph))AlL] ( 2 ) and [L(thf)Al(CH(Ph)? CH2)Al(thf)L] ( 3 ), respectively. In the presence of Na metal, precursor 1 reacted with butadienes, possibly through the reduced “dialumene” or the “carbene‐like” :AlL species, to yield aluminacyclopentenes [LAl(CH2C(Me)?C(Me)CH2)Na]n ( 4 a ) and [Na(dme)3][LAl(CH2C(Me)?CHCH2)] ( 4 b , dme=dimethoxyethane) as [1+4] cycloaddition products, as well as the [2+4] cycloaddition product 1,6‐dialumina‐3,8‐cyclodecadiene, [{Na(dme)}2][LAl(CH2C(Me)?C(Me)CH2)2AlL] ( 5 ). The possible mechanisms of the cycloaddition reactions were studied by using DFT computations.  相似文献   

14.
The acid-base reactions between the rare-earth metal (Ln) tris(ortho-N,N-dimethylaminobenzyl) complexes [Ln(CH2C(H4NMe2-o)3] with one equivalent of the silylene-linked cyclopentadiene-amine ligand (C5Me4H)SiMe2NH(C6H2Me3-2,4,6) afforded the corresponding half-sandwich aminobenzyl complexes [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Ln(CH2C6H4NMe2-o)(thf)] (2-Ln) (Ln=Y, La, Pr, Nd, Sm, Gd, Lu) in 60-87 % isolated yields. The one-pot reaction between ScCl(3) and [Me2Si(C5Me4)(NC6H2Me3-2,4,6)]Li2 followed by reaction with LiCH2C6H4NMe2-o in THF gave the scandium analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Sc(CH2C6H4NMe2-o)] (2-Sc) in 67 % isolated yield. 2-Sc could not be prepared by the acid-base reaction between [Sc(CH2C6H4NMe2-o)3] and (C5Me4H)SiMe2NH(C6H2Me3-2,4,6). These half-sandwich rare-earth metal aminobenzyl complexes can serve as efficient catalyst precursors for the catalytic addition of various phosphine P--H bonds to carbodiimides to form a series of phosphaguanidine derivatives with excellent tolerability to aromatic carbon-halogen bonds. A significant increase in the catalytic activity was observed, as a result of an increase in the metal size with a general trend of La>Pr, Nd>Sm>Gd>Lu>Sc. The reaction of 2-La with 1 equiv of Ph2PH yielded the corresponding phosphide complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)(thf)2] (4), which, on recrystallization from benzene, gave the dimeric analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)]2 (5). Addition of 4 or 5 to iPrN=C=NiPr in THF yielded the phosphaguanidinate complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(thf)] (6), which, on recrystallization from ether, afforded the ether-coordinated structurally characterizable analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(OEt2)] (7). The reaction of 6 or 7 with Ph2PH in THF yielded 4 and the phosphaguanidine iPrN=C(PPh2)NHiPr (3a). These results suggest that the catalytic formation of a phosphaguanidine compound proceeds through the nucleophilic addition of a phosphide species, which is formed by the acid-base reaction between a rare-earth metal o-dimethylaminobenzyl bond and a phosphine P--H bond, to a carbodiimide, followed by the protonolysis of the resultant phosphaguanidinate species by a phosphine P--H bond. Almost all of the rare earth complexes reported this paper were structurally characterized by X-ray diffraction studies.  相似文献   

15.
A series of alkaline earth metallocene complexes carrying the diphenylphosphanocyclopentadienyl ligand, [Ae(L)(x)(η(5)-C(5)H(4)PPh(2))(2)] (Ae = Ca, L = thf, x = 1 (6a); Ae = Ca, L = dme, x = 1 (6b); Ae = Sr, L = thf, x = 1 (7); Ae = Ba, L = thf, x = 1 (8a); Ae = Ba, L = dme, x = 2 (8b)), were prepared by redox transmetallation/protolysis from the free metals, diphenylmercury and diphenylphosphanocyclopentadiene. These complexes were characterised using multinuclear NMR spectroscopy and two by single crystal X-ray diffraction. [Ca(dme)(η(5)-C(5)H(4)PPh(2))(2)] (6b) is a discrete neutral monomeric eight coordinate molecule in which the phosphorus atoms are not coordinated to the calcium ion and the larger barium analogue, ten-coordinate [Ba(dme)(2)(η(5)-C(5)H(4)PPh(2))(2)] (8b), has an extremely bent sandwich structure due to the two dme ligands attached to the metal. Bimetallic complexes, [Ae(thf)(x)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].(solv) (Ae = Ca, L = thf, x = 2, solv = 1.5thf (9); Ae = Sr, L = thf, x = 3, solv = 1.5thf (10); Ae = Ba, L = thf, x = 3, solv = thf (11)) were obtained by reaction of the homometallic complexes with [Pt(cod)(Me)(2)]. The crystal structures of [Ca(thf)(2)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].1.5thf (9), [Sr(thf)(3)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].1.5thf (10) and [Ba(thf)(3)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].thf (11) show the eight (calcium) and nine coordinate (strontium and barium) fragments acting as a chelating metalloligand attached to the square planar platinum through the phosphorus donor atoms. The solution chemistry of these bimetallic complexes has been investigated by NMR spectroscopy, electro-spray ionisation mass spectrometry and conductivity experiments which indicate that the bimetallic compounds persist in solution.  相似文献   

16.
The following crystalline, or microcrystalline (4), metal diamides have been prepared under mild conditions from the N,N'-disubstituted 1,2-diaminobenzene [{N(R)H}2C6H4-1,2] (H(2): R = CH2But; H2L': R = SiMe2NPri2): [Li(thf)(mu-L)(mu-I)Ca(thf)] (1), [Li(thf)4][{Zn(mu-L)}3(mu3-Cl)] (2), [Li(thf)4][Zn(L)2] (3), [{Li(OEt2)(mu-L)Zn}2(mu-L)] (4), [Li(OEt2)(mu-L)Zn(mu-L)Zn(LH)] (5) and [Li(thf)(mu-L')Li(thf)2] (6). Compounds 1-5 were obtained from [Li2(L)] and CaI2 (1) or ZnCl2 (2-5) while 6 was derived from H2(L') and LiBun. Compound 5 was isolated as a very minor by-product from the synthesis of 4, and is assumed to have been formed therefrom by adventitious hydrolysis. The green salt 3 was paramagnetic with the negative charge uniformly delocalised on the two ligands. The other compounds were colourless and diamagnetic. The X-ray structures of each, except 4, are reported and discussed.  相似文献   

17.
Di(tert-butyl)sulfur diimide and bis(trimethylsilyl)sulfur diimide were reacted with different metalated amines to form versatile novel multidentate ligand systems with side-arm donation. Their complexation properties in terms of ligand design, denticity and the cation size are discussed. We report herein the synthesis and structure elucidation of [(tBuN)(2)S{LiMe(2)N(C(6)H(4))S(NtBu)(2)}(2)] (1), [(Li{Me(2)N(C(6)H(4))S(NSiMe(3))(2)})(2)] (2), [(Li(thf){Me(2)N(C(6)H(4))S(NSiMe(3))(2)})(2)] (3), [(Li{2-PicS(NSiMe(3))(2)})(2)] (4), [(Li{Me(2)N(CH(2))(2)N(Me)S(NSiMe(3))(2)})(2)] (5), [(Na{Me(2)N(CH(2))(2)N(Me)S(NSiMe(3))(2)})(2)] (6) and [(K{Me(2)N(C(6)H(4))S(NSiMe(3))(2)})(2)] (7).  相似文献   

18.
Polymerization of methyl methacrylate (MMA) initiated by the rare-earth borohydride complexes [Ln(BH(4))(3)(thf)(3)] (Ln=Nd, Sm) or [Sm(BH(4))(Cp*)(2)(thf)] (Cp*=eta-C(5)Me(5)) proceeds at ambient temperature to give rather syndiotactic poly(methyl methacrylate) (PMMA) with molar masses M(n) higher than expected and quite broad molar mass distributions, which is consistent with a poor initiation efficiency. The polymerization of MMA was investigated by performing density functional theory (DFT) calculations on an eta-C(5)H(5) model metallocene and showed that in the reaction of [Eu(BH(4))(Cp)(2)] with MMA the borate [Eu(Cp)(2){(OBH(3))(OMe)C=C(Me)(2)}] (e-2) complex, which forms via the enolate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e), is calculated to be exergonic and is the most likely of all of the possible products. This product is favored because the reaction that leads to the formation of carboxylate [Eu(Cp)(2){OOC-C(Me)(=CH(2))}] (f) is thermodynamically favorable, but kinetically disfavored, and both of the potential products from a Markovnikov [Eu(Cp)(2){O(OMe)C-CH(Me)(CH(2)BH(3))}] (g) or anti-Markovnikov [Eu(Cp)(2){O(OMe)C-C(Me(2))(BH(3))}] (h) hydroboration reaction are also kinetically inaccessible. Similar computational results were obtained for the reaction of [Eu(BH(4))(3)] and MMA with all of the products showing extra stabilization. The DFT calculations performed by using [Eu(Cp)(2)(H)] to model the mechanism previously reported for the polymerization of MMA initiated by [Sm(Cp*)(2)(H)](2) confirmed the favorable exergonic formation of the intermediate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e') as the kinetic product, this enolate species ultimately leads to the formation of PMMA as experimentally observed. Replacing H by BH(4) thus prevents the 1,4-addition of the [Eu(BH(4))(Cp)(2)] borohydride ligand to the first incoming MMA molecule and instead favors the formation of the borate complex e-2. This intermediate is the somewhat active species in the polymerization of MMA initiated by the borohydride precursors [Ln(BH(4))(3)(thf)(3)] or [Sm(BH(4))(Cp*)(2)(thf)].  相似文献   

19.
Two single oxygen-bridged heterobimetallic oxides of Al(III) with group 4 metals (Ti, Hf) have been prepared. The reaction of LAlMeOH (1) [L = CH(N(Ar)(CMe))2, Ar = 2,6-iPr2C6H3] with dimethylmetallocenes of Ti and Hf in toluene (80 degrees C) and ether (room temperature), respectively, resulted in the formation of LAl(Me)(mu-O)M(Me)Cp2 [M = Ti (2), Hf (3)] in moderate to good yield. Compounds 2 and 3 were characterized by elemental analysis, IR, NMR (1H and 13C), EI-MS, and single-crystal X-ray structural analysis. Furthermore, compound 2 showed good catalytic activity in ethylene and styrene homopolymerization, while compound 3 is less active in ethylene polymerization. The styrene polymerization yields atactic polystyrene.  相似文献   

20.
We describe the synthesis, structure, and reactivity of low-coordinate Al-alkyl and -alkoxide cationic complexes incorporating the sterically bulky aminophenolate bidentate ligand 6-(CH(2)NMe(2))-2-CPh(3)-4-Me-C(6)H(2)O- (N,O). These complexes are derived from the ionization of neutral dialkyl Al complexes (N,O)Al2) (1 a, R=Me; 1 b, R=iBu), readily obtained by alkane elimination between AlR3 and the corresponding aminophenol ligand, with the alkyl abstracting reagents B(C(6)F(5))3 and [Ph(3)C][B(C(6)F(5))4]. The reactions of 1 a,b with B(C(6)F(5))3 yield complicated mixtures or decomposition products, however the ionization of the Al-diisobutyl derivative 1 b with [Ph(3)C][B(C(6)F(5))4] affords a stable four-coordinate Al-PhBr cationic adduct [(N,O)Al(iBu)(PhBr)]+ (3+), as deduced from elemental analysis data. Complex 3+ readily coordinates Lewis bases such as THF to form the corresponding adduct [(N,O)Al(iBu)(thf)]+ (4+), and also rapidly chain-transfers with 1-hexene to yield the three-coordinate Al-hexyl cation [(N,O)Al-hexyl]+ (5+). Both cations 3+ and 5+ slowly dimerize to form unprecedented organoaluminum dications [(N,O)AlR+]2 (3'++, R=iBu; 5'++, R=hexyl) as deduced from X-ray crystallographic analysis. Cation 3+ reacts quickly with iPrOH to form a stable Lewis acid/base adduct [(N,O)Al(iBu)(HOiPr)]+ (6+), which constitutes the first X-ray characterized adduct between an Al-alkyl complex and a simple ROH. The Al-ROH proton in 6+ is readily abstracted by NMe(2)Ph to form the neutral isopropoxide Al complex [(N,O)Al(iBu)(OiPr)] (7). Upon reaction with THF, cation 6+ undergoes an intramolecular proton transfer to yield the ammonium Al-THF complex [(eta1-HN,O)Al(iBu)(OiPr)(thf)] (8 b+), in which the aminophenolate is eta1-coordinated to the Al center. Cation 8 b+ can then be converted to the desired Al-alkoxide derivative [(N,O)Al(OiPr)(thf)](+) (10+), by an intramolecular protonolysis reaction, as confirmed by X-ray crystallography. The synthesized Al-alkyl cations form robust four-coordinate adducts in the presence of cyclic esters such as epsilon-caprolactone and (D,L)-lactide, but no insertion chemistry occurs, illustrating the poor ability of the Al-R+ moiety to ring-open. In contrast, the Al-alkoxide cation 10+ polymerizes epsilon-caprolactone in a controlled manner with excellent activity, but is inactive in the polymerization of (D,L)-lactide and L-lactide. Control experiments with L-lactide show that cation 10+ ring-opens L-lactide to yield a robust five-coordinated Al--lactate cation [(N,O)Al(eta2-L-lactate-OiPr)(thf)]+ (13+), derived from a monoinsertion of L-lactide into the Al--OiPr bond of 10+, that does not further react. Cation 13+ may be regarded as a structurally characterized close mimic of the initial intermediate in the ring opening polymerization (ROP), of lactides by [{LX}M(OR)(L)] (where LX-=bidentate monoanionic ligand and L=labile ligand) metal complex initiators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号