首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) represents a powerful technique for analyzing biological samples due to the ultrahigh resolving power, high mass accuracy, and multiple-stage tandem mass spectrometry (MSn). With the advent of electrospray ionization (ESI), determinations of binding stoichiometry and binding sites for protein complexes are available. This review summarizes the recent FT-ICR MS applications in characterization of protein complexes, such as protein-peptide complexes, protein-protein complexes, and protein-nucleic acid complexes. Especially, combined with ECD and SWIFT techniques, FT-ICR MS has unique ion manipulation capabilities and plays a critical role in the analysis of protein complexes.  相似文献   

2.
Fourier transform ion cyclotron resonance (FT-ICR) spectroscopy, a modern form of mass spectrometry whose advantages were first demonstrated in our laboratory in 1974, is characterized by ultrahigh mass resolution, wide mass range, high speed and automatic mass calibration. Together with the FT-ICR double resonance experiment, these advantages make FT-ICR a powerful technique for studying complex ion/molecule reaction pathways and for general problems in analytical mass spectrometry. In addition, the high resolution principles of FT-ICR have been widely adopted around the world for precise mass measurements of nuclides.  相似文献   

3.
Fast and easy identification of fungal phytopathogens is of great importance in agriculture. In this context, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool for analyzing microorganisms. This study deals with a methodology for MALDI-TOF MS-based identification of downy and powdery mildews representing obligate biotrophic parasites of crop plants. Experimental approaches for the MS analyses were optimized using Bremia lactucae, cause of lettuce downy mildew, and Oidium neolycopersici, cause of tomato powdery mildew. This involved determining a suitable concentration of spores in the sample, selection of a proper MALDI matrix, looking for the optimal solvent composition, and evaluation of different sample preparation methods. Furthermore, using different MALDI target materials and surfaces (stainless steel vs polymer-based) and applying various conditions for sample exposure to the acidic MALDI matrix system were investigated. The dried droplet method involving solvent evaporation at room temperature was found to be the most suitable for the deposition of spores and MALDI matrix on the target and the subsequent crystallization. The concentration of spore suspension was optimal between 2 and 5?×?10(9) spores per ml. The best peptide/protein profiles (in terms of signal-to-noise ratio and number of peaks) were obtained by combining ferulic and sinapinic acids as a mixed MALDI matrix. A pretreatment of the spore cell wall with hydrolases was successfully introduced prior to MS measurements to obtain more pronounced signals. Finally, a novel procedure was developed for direct mass spectra acquisition from infected plant leaves. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, seven new sonolytic degradation products of Orange G were found and identified using powerful analytical techniques such as liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS), tandem mass spectrometry (MS/MS), and liquid chromatography with diode-array detection (LC-DAD). Each technique provided complementary information for the degradation products identification. In order to resolve the MS and MS/MS spectra obtained, the separation conditions were optimized. Among them, Orange G was unambiguously identified based on its abundant [M-H](-) ion, [M+H](+) ion, ultra-violet and visible spectra, retention time, and tandem mass spectrometric analysis compared with an authentic standard. The seven new degradation products were tentatively identified based on ultra-violet and visible spectra, [M-H](-) ions, and tandem mass spectrometry. The neutral losses of SO(2), SO(3), N(2) and H(2)O for MS/MS spectra which appear to be characteristic of the negative ion mode were observed. Based on this by-product identification, a possible multi-step degradation scheme is proposed. The analysis results of degradation products reveal that the degradation mechanism proceeds via reductive cleavage of the azo linkage, as well as intermolecular dehydration and desulfonation due to the powerful oxidizing hydroxyl radicals as well as hydrogen radical.  相似文献   

5.
The application of secondary ion mass spectrometry in recent semiconductor applications has highlighted the need for extremely high depth resolution. The depth resolution limitations arise from the high dose, energetic interactions of the primary ion with the sample, leading to profile distortions due to the primary incorporation process and the collision cascades. Evolutionary and revolutionary approaches are presently proposed as potential solutions to achieve the ultimate in depth resolution. Evolutionary concepts are based on using extremely low bombardment energies (∼100 eV) and/or cluster beams whereas revolutionary concepts such as zero-energy SIMS and the tomographic atomprobe remove the primary ion beam completely.  相似文献   

6.
Several ancient Mayan vessels from the Kislak Collection of the US Library of Congress were examined for the presence of alkaloids. One of them, a codex-style flask, bears a text that appears to read yo-'OTOT-ti 'u-MAY, spelling y-otoot 'u-may 'the home of its/his/her tobacco'. Samples extracted from this Late Classic period (600 to 900?AD) container were analyzed by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) methods. Nicotine was identified as the major component of the extracts. LC/MS analyses also yielded signals due to nicotine mono-oxides. The identities of the compounds were determined by comparison of the chromatographic and/or mass spectral characteristics with those from standards and literature data. High-resolution high mass accuracy tandem mass spectrometry (MS/MS) spectra of protonated nicotine and nicotine mono-oxides were measured to verify and to correct previous product ion assignments. These analyses provided positive evidence for nicotine from a Mayan vessel, indicating it as a likely holder of tobacco leafs. The result of this investigation is the first physical evidence of tobacco from a Mayan container, and only the second example where the vessel content recorded in a Mayan hieroglyphic text has been confirmed directly by chromatography/mass spectrometry trace analysis.  相似文献   

7.
Artemisinin (QHS) is one of the first-line antimalarials, and autoinduction of CYP-mediated metabolism can result in its reduced exposure. To better understand the autoinduction of QHS, we evaluated the pharmacokinetics of QHS and its phase I metabolites in rats using an liquid chromatography-high resolution mass spectrometry (LC-HRMS) method. The LC separation was improved, allowing the separation of QHS and its metabolites from their diastereomers, and seven metabolites of QHS with relatively high exposure were identified in rat plasma, including deoxyartemisinin (DQHS), three monoyhydroxylated plus deoxyl metabolites (M1-M3) and three monohydroxylated metabolites (M4-M6). For detection, a high-resolution LTQ/Orbitrap mass spectrometer with an electrospray ionization (ESI) inlet in the positive ion mode was used. High-resolution extracted ion chromatograms for each analyte were obtained by processing the full-scan MS dataset with 10 ppm mass tolerance. The plasma samples were pretreated by protein precipitation with acetonitrile. The standard curve was linear (r(2) > 0.99) over the QHS and DQHS concentration range of 5.0-200.0 ng/ml in 50 μl of plasma, which offered sufficient sensitivity and accuracy for the determination of QHS and its metabolites. A 3-day validation approach was used for absolute quantitation of QHS and DQHS. The other six metabolites of QHS were semiquantified based on the calibration curve of QHS. The present method was applied to the pharmacokinetic study of QHS in rats after a single oral administration. The data shown here also suggest that this type of mass analyzer will be capable of a quantitative-qualitative workflow.  相似文献   

8.
In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI-HR-MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague-Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid-phase extraction and then subjected to LC/HR-MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O-sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC-MS/MS and MS(n) experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways.  相似文献   

9.
In the present study we investigate free electron attachment to the amino acid valine. Mass spectra and anion efficiency curves are measured in the electron energy range from about zero eV to about 15 eV and the anionic fragments are analyzed with a double focusing mass spectrometer. The high sensitivity of the present setup allows the detection of 10 fragment anions that have not been reported before and the high mass resolution of our sector field mass spectrometer allows us the separation and identification of isobaric anions. Thus the isobaric ion pairs, CN-/C2H2-_2^-, and O-/NH2-_2^-, can be identified and assigned to individual resonances. For some of the heavier fragment anions formed we have studied collision induced dissociation to collect more information on the structures of these anions.  相似文献   

10.
Abstract

Mass spectrometry (MS) has progressed to become a powerful analytical tool for both quantitative and qualitative applications. The first mass spectrometer was constructed in 1912 and since then it has developed from only analyzing small inorganic molecules to biological macromolecules, practically with no mass limitations. Proteomics research, in particular, increasingly depends on MS technologies. The ability of mass spectrometry analyzing proteins and other biological extracts is due to the advances gained through the development of soft ionization techniques such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) that can transform biomolecules into ions. ESI can efficiently be interfaced with separation techniques enhancing its role in the life and health sciences. MALDI, however, has the advantage of producing singly charges ions of peptides and proteins, minimizing spectral complexity. Regardless of the ionization source, the sensitivity of a mass spectrometer is related to the mass analyzer where ion separation occurs. Both quadrupole and time of flight (ToF) mass analyzers are commonly used and they can be configured together as QToF tandem mass spectrometric instruments. Tandem mass spectrometry (MS/MS), as the name indicates, is the result of performing two or more sequential separations of ions usually coupling two or more mass analyzers. Coupling a quadrupole and time of flight resulted in the production of high-resolution mass spectrometers (i.e., Q-ToF). This article will historically introduce mass spectrometry and summarizes the advantages and disadvantages of ESI and MALDI along with quadrupole and ToF mass analyzers, including the technical marriage between the two analyzers. This article is educational in nature and intended for graduate students and senior biochemistry students as well as chemists and biochemists who are not familiar with mass spectrometry and would like to learn the basics; it is not intended for mass spectrometry experts.  相似文献   

11.
For the first time the internal magnetic field in a solid was determined by measurement of inelastic spin-flip-scattering of slow neutrons using a neutron crystal spectrometer with extremely high energy resolution. A value of (175 ± 15) kOe was obtained in V2O3 at a temperature of 105 °K. Using a hyperfine coupling constant deduced by Jones, this value corresponds to an ordered magnetic moment of 1.25 μ b per vanadium ion.  相似文献   

12.
In the present study, accurate mass measurements by ultrahigh resolution mass spectrometry with Orbitrap-Exactive working at resolving power R: 100,000 (m/z 200, full width at half maximum) with an accuracy better than 2?ppm in all the mass range (m/z 200 to 2000) were used to show a detailed molecular composition of diverse edible oils and fats. Flow injection was used to introduce samples into the mass spectrometer, obtaining a complete analysis of each sample in less than 10 min, including blanks. Meticulous choice of organic solvents and optimization of the ion source and Orbitrap mass analyzer parameters were carried out, in order to achieve reproducible mass spectra giving reliable elemental compositions of the lipid samples and to prevent carry over. More than 200 elemental compositions attributable to diacylglycerols, triacylglycerols (TAGs), and their oxidation products have been found in the spectra of food lipids from different origin. Several compounds with very close molecular mass could only be resolved through ultrahigh resolution, allowing detailed and robust TAG profiling with a high characterization potential. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Comprehensive analysis of high-resolution mass spectra of aged natural dammar resin obtained with Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) using matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure chemical ionization (APCI) is presented. Dammar resin is one of the most important components of painting varnishes. Dammar resin is a terpenoid resin (dominated by triterpenoids) with intrinsically very complex composition. This complexity further increases with aging. Ten different solvents and two-component solvent mixtures were tested for sample preparation. The most suitable solvent mixtures for the MALDI-FT-ICR-MS analysis were dichloromethane-acetone and dichloromethane-ethanol. The obtained MALDI-FTMS mass spectrum contains nine clusters of peaks in the m/z range of 420-2200, and the obtained APCI-FTMS mass spectrum contains three clusters of peaks in the m/z range of 380-910. The peaks in the clusters correspond to the oxygenated derivatives of terpenoids differing by the number of C(15)H(24) units. The clusters, in turn, are composed of subclusters differing by the number of oxygen atoms in the molecules. Thorough analysis and identification of the components (or groups of components) by their accurate m/z ratios was carried out, and molecular formulas (elemental compositions) of all major peaks in the MALDI-FTMS and APCI-FTMS spectra were identified (and groups of possible isomeric compounds were proposed). In the MALDI-FTMS and APCI-FTMS mass spectrum, besides the oxidized C(30), triterpenoids also peaks corresponding to C(29) and C(31) derivatives of triterpenoids (demethylated and methylated, correspondingly) were detected. MALDI and APCI are complementary ionization sources for the analysis of natural dammar resin. In the MALDI source, preferably polar (extensively oxidized) components of the resin are ionized (mostly as Na(+) adducts), whereas in the APCI source, preferably nonpolar (hydrocarbon and slightly oxidized) compounds are ionized (by protonation). Either of the two ionization methods, when used alone, gives an incomplete picture of the dammar resin composition.  相似文献   

14.
The highest precision in the determination of nuclear and atomic masses can be achieved by Penning trap mass spectrometry. The mass value is obtained through a measurement of the cyclotron frequency of the stored charged particle. Two different approaches are used at the Penning trap mass spectrometer TRIGA-TRAP for the mass determination: the destructive Time-Of-Flight Ion Cyclotron Resonance (TOF-ICR) technique and the non-destructive Fourier Transform Ion Cyclotron Resonance (FT-ICR) method. New developments for both techniques are described, which will improve the detection efficiency and the suppression of contaminations in the case of TOF-ICR. The FT-ICR detection systems will allow for the investigation of an incoming ion bunch from a radioactive-beam facility on the one hand, and for the detection of a single singly charged ion in the Penning trap on the other hand.  相似文献   

15.
Abstract: Mass spectrometry (MS) has become an integral tool in life sciences. The first step in MS analysis is ion formation (ionization). Many ionization methods currently exist; electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are the most commonly used. ESI relies on the formation of charged droplets releasing ions from the surface (ion evaporation model) or via complete solvent evaporation (charge residual model). MALDI ionization, however, is facilitated via laser energy and the use of a matrix. Despite wide use, ESI cannot efficiently ionize nonpolar compounds. Atmospheric pressure chemical ionization (APCI) and atmospheric pressure photo ionization (APPI) are better suited for such tasks. APPI requires photon energy and a dopant, whereas APCI is similar to chemical ionization. In 2004, ambient MS was introduced in which ionization occurs at the sample in its native form. Desorption electrospray ionization (DESI) and direct analysis in real time (DART) are the most widely used methods. In this mini-review, we provide an overview of the main ionization methods and the mechanisms of ion formation. This article is educational and intended for students/researchers who are not very familiar with MS and would like to learn the basics; it is not for MS experts.  相似文献   

16.
The atomic structure of a solid surface can be imaged with the field ion microscope and the chemical species of surface atoms can be identified by the time-of-flight atom-probe. By combining a pulsed-laser technique to field ion microscopy, atomic processes in surface reconstruction and growth of thin films can be studied with a resolution of 2.5 Å, and in time steps of a few nanoseconds. The mass resolution and material applicability of a pulsed-laser time-of-flight atom-probe are greatly improved. Thus materials of poor conductivity such as high purity silicon can be analyzed with excellent mass resolution. It is also ionion energy analyzer with an accuracy and resolution of 2 parts per 100 000 and an ion reaction and dissociation time analyzer of 20 fs time resolution. Some recent studies with these techniques such as (1) surface reconstruction of Pt and Ir(001) and (110) surfaces, (2) observation of well ordered and atomically resolved images of pure silicon surfaces and surface reconstruction of many surfaces of silicon, and (3) formation of multiple charge cluster ions and dissociation of compound ions by atomic tunneling in an electric field etc., will be briefly described. We want to emphasize that recent studies of Si and metal surfaces are concerned with atomic structures of thermally equilibrated surfaces, and not with field evaporated surfaces as in earlier studies.  相似文献   

17.
利用自行研制的蒸发/冷凝实验装置作为基质辅助激光解吸/电离飞行时间质谱仪的特种接口,通过冷凝方式在线添加基质,冷凝管出口处的最终粒子直接引入空气动力学粒径分析仪或自行研制的飞行时间质谱仪,可对实验室产生的生物气溶胶粒子进行实时检测. 同时研究了最终粒子粒径大小的决定因素:加热池温度、初始粒子大小及其粒子数浓度及基质种类,获得了探测分析物分子离子峰所需的实验条件.  相似文献   

18.
Dipolar and single-phase two-electrode quadrupolar detection schemes have been investigated at a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) setup built for the KATRIN experiment at the Max-Planck-Institute for Nuclear Physics (MPIK) in Heidelberg. We present first experimental results of 7Li?+? signals from a cylindrical Penning trap configuration for both detection schemes. While the prominent signal of the conventional dipolar detection scheme marks the reduced cyclotron frequency, the main signal for the quadrupolar detection appears at the sum of the reduced cyclotron frequency and the magnetron frequency. For ideal trapping fields, this sum frequency equals the ion cyclotron frequency ?? c ?=?qB/(2??m). Sidebands due to the combined motions of the cyclotron mode and magnetron mode are observed by quadrupolar detection which allows the determination of the respective combinations of eigenfrequencies.  相似文献   

19.
Second-phase particles and small porosities are known to favour fatigue crack initiation in high-strength aluminium alloys 2050-T8 and 7050-T7451. Using high-resolution X-ray tomography (320 nm voxel size), with Paganin reconstruction algorithms, the probability that large clusters of particles contain porosities could be measured for the first time in 3D, as well as precise 3D size distributions. Additional holotomography imaging provided improved spatial resolution (50 nm voxel size), allowing to estimate the probability of finding cracked particles in the as-received material state. The extremely precise 3D shape (including cracks) as well as local chemistry of the particles has been determined. This experiment enabled unprecedented 3D identification of detrimental stress risers relevant for fatigue in as-received aluminium alloys.  相似文献   

20.
The reactivity of ClMn(H(2)O)(+) towards small organic compounds (L) was examined in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The organic compounds studied are aliphatic and aromatic alcohols, aliphatic amines, ketones, an epoxide, an ether, a thiol and a phosphine. All the reactions lead to the formation of the ClMn(H(2)O)(L)(+) complex, which dissociates by loss of the H(2)O molecule. In general, the reactions were found to occur with high efficiencies (>85%), indicating them to be exothermic. Electron transfer was also observed between ClMn(H(2)O)(+) and compounds with low ionization energies (IE), to form the molecular ion (L(+?)) of the analyte. Based on these observations, the IE of ClMn(H(2)O)(+) is approximated to be 8.1?±?0.1 eV. Thus, the utility of ClMn(H(2)O)(+) as a chemical ionization reagent in mass spectrometry is expected to be limited to organic compounds with IEs greater than 8 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号