首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
评述了近几年来电化学检测在流动注射分析中的应用,展望了流动注射电化学分析法的发展动向。  相似文献   

2.
电化学发光检测是近几年发展起来的毛细管电泳分析中的一种新的检测方法,它将毛细管的分离技术与电化学发光检测相结合,在临床分析及医药、病毒、免疫等科学实验中将大大简化分析的技术难度,提高分析的准确性。  相似文献   

3.
对近年来毛细管电泳电化学检测在生物分子(氨基酸、蛋白质、脱氧核糖核酸和糖等)分析中的应用进展作出综述,展望了电化学检测在毛细管电泳中的应用前景(引用文献55篇)。  相似文献   

4.
光电化学生物分析是近年来新出现并发展迅速的一种分析技术,其检测原理是基于在光照下识别元件和目标分子之间的生物识别作用造成光电活性物质产生的电信号的改变,以实现对待测物的定量测定。由于其灵敏选择性检测的优点及其在生物分析中的巨大潜力,该方法吸引了较多的关注,并且在检测性能和生物传感应用等方面也取得了较大进步。本文针对光电化学生物分析中常见的四种应用领域,即直接光电化学检测、光电化学酶检测、光电化学核酸检测以及光电化学免疫分析,综述了近年来国内外在光电化学生物分析研究领域的最新进展,并对其未来发展进行了展望。  相似文献   

5.
本文介绍了近年来纳米材料电化学与生物传感器在有机微污染物检测中的研究现状,分析了这些传感器中纳米材料修饰电极的特点,重点阐述了纳米材料在有机微污染物检测中的重要作用,列举了一些纳米材料电化学与生物传感器在有机微污染物检测中的应用。最后对纳米材料电化学与生物传感器用于有机微污染物的检测研究进行了简要评述和展望。  相似文献   

6.
电化学免疫分析法研究进展   总被引:27,自引:8,他引:27  
焦奎  张敏 《分析化学》1995,23(10):1211-1217
电化学免疫分析法是将免疫分析与电化学分析技术相结合的一种免疫分析新方法,近十多年来,电化免疫分析的研究有了迅速的发展。本文对电化学的免疫分析法的标记物、免疫方法、电化学检测技术进行了概括总结,并展望了电化学免疫分析的发展前景。  相似文献   

7.
高效毛细管电泳安培检测的进展   总被引:4,自引:4,他引:4  
周伟红  吴明嘉 《分析化学》1995,23(3):343-348
本文对高效毛细管电泳电化学检测方法中的安培检测进行了评述,安培检测具有灵敏度高,选择的特点,安培检测根据毛细管内径的大小有离柱安培检测和柱端安培检测,近年来脉冲安培分析法、化学修饰电极也已被引入毛细管电泳电化学检测。  相似文献   

8.
可穿戴电化学传感器件是一种可直接穿戴在身体特定部位、甚至植入用户体内的柔性电化学传感器。其具有简易性、便携性、灵活性等特点,可实时电化学监测与跟踪分析待测物,被广泛用于医疗保健、人体健康和环境监测等领域。该综述概括了可穿戴电化学传感器件的硬件设计与研制,及其在汗液检测、神经化学监测、现场分析检测(POCT)中的应用,总结和展望了可穿戴电化学传感器件的未来发展趋势,以期为可穿戴电化学传感领域的进一步发展提供参考。  相似文献   

9.
无酶电化学生物传感器具有环境适用性强、稳定性高、材料简单易得、灵敏度高、检测限低等特点,近年来受到研究者广泛关注。纳米材料有类酶活性,表现出类似天然酶的酶促反应动力学和催化机理,且能够增强界面吸附性能,增加电催化活性,并促进电子转移动力学,从而广泛应用于无酶电化学生物传感器。本文探索了具有电催化活性的纳米材料及其修饰电极的制备方法,介绍了无酶电化学传感器在医疗诊断、食品检测、环境检测以及其他领域中的应用,讨论了开发基于纳米材料的电化学传感器的未来机遇和挑战。  相似文献   

10.
构建新型纳米材料修饰的电化学传感器,提升电极的电催化性能,已成为电化学分析中的研究热点。本文归纳了各种纳米修饰材料的特性,及近年来不同类型纳米材料修饰电极在中药活性成分分析领域的应用。对纳米材料修饰电极存在的问题进行了概述,并展望了其发展前景,为中药有效成分的快速灵敏检测提供理论依据。  相似文献   

11.
Summary An overview is given of works on the construction and application of amperometric enzyme electrodes for the determination of metabolites in biological solutions. The following electrodes are dealt with: monoenzyme and polyenzyme electrodes involving amperometric detection of hydrogen peroxide, bienzyme electrodes with oxidase-peroxidase, electrodes based on organic metals and chemically modified electrodes, dehydrogenase electrodes, amperometric hydrolase electrodes and highly sensitive electrodes involving chemical amplification. Biocatalytic stripping and macrokinetic behaviour of the electrodes are discussed.
Amperometrische Enzymelektroden in der analytischen Chemie
  相似文献   

12.
A review is given of so-called pulsed amperometric detection at Au and Pt electrodes. Of greatest interest is the application of pulsed amperometric detection for polar aliphatic compounds not easily detected by conventional photometric or fluorometric techniques. The anodic detection mechanisms are electrocatalytic in nature under the control of potential-dependent surface states. Oxidations of carbohydrates at Au electrodes in alkaline media occur in a potential region where a submonolayer of adsorbed hydroxyl radicals (·OHads) is formed and speculation is offered on the role of this species in the anodic mechanisms. Very little anodic signal is obtained at Au electrodes for low-molecular-mass n-alcohols; however, a large response is obtained from oxidation of the alcohol moiety of n-alkanolamines. This is attributed to the beneficial effect of adsorption via the amine moiety with the result that the residence time of the molecules at the electrode surface is increased to give a high probability for ultimate oxidation. Amines and sulfur compounds with non-bonded electrons on the N and S atom, respectively, are adsorbed at Au electrodes and are oxidatively desorbed concomitantly with formation of inert surface oxide (AuO). The simultaneous formation of surface oxide produces a large background signal in pulsed amperometric detection. Hence, a modification of the pulsed waveform is described whose application is called integrated pulsed amperometric detection. Applications are shown for pulsed amperometric detection and integrated pulsed amperometric detection in ion chromatography to illustrate strengths of these combined technologies.  相似文献   

13.
The simplified amperometric detection scheme demonstrated is based on the amperometric working and electrophoretic ground electrodes only. The latter serves as counter and pseudo-reference as well. It is shown via the successful determination of neurotransmitters, ascorbic acid and phenols on gold or platinum working electrodes that this approach is feasible for detection on a channel based electrophoretic separation device. Also presented is the detection of carbohydrates and amino acids with copper electrodes. The results were found to be similar to those obtained with conventional capillary systems with amperometric detection, albeit at much reduced analysis times.  相似文献   

14.
Electrochemical detectors for liquid chromatography and capillary electrophoresis are reviewed with special emphasis on electrode materials that allow the amperometric detection of otherwise non-electroactive compounds such as aliphatic alcohols, carbohydrates or amino acids. Noble metal electrodes can catalyze the oxidation of aliphatic compounds in alkaline media if multistep potential-time waveforms are employed. Various metal and metal oxide electrodes such as Ni, Cu or Co allow the detection of carbohydrates and similar compounds under constant potential conditions. Metallic copper electrodes operating in an amperometric mode or in a potentiometric mode can also serve as selective detectors for complexing species. A range of applications in combination with chromatography and electrophoresis is summarized. The current state of electrochemical detectors indicates that both amperometric and potentiometric detectors are on the verge of becoming tailormade detectors for micro-separation techniques.  相似文献   

15.
    
Electrochemical detectors for liquid chromatography and capillary electrophoresis are reviewed with special emphasis on electrode materials that allow the amperometric detection of otherwise non-electroactive compounds such as aliphatic alcohols, carbohydrates or amino acids. Noble metal electrodes can catalyze the oxidation of aliphatic compounds in alkaline media if multistep potential-time waveforms are employed. Various metal and metal oxide electrodes such as Ni, Cu or Co allow the detection of carbohydrates and similar compounds under constant potential conditions. Metallic copper electrodes operating in an amperometric mode or in a potentiometric mode can also serve as selective detectors for complexing species. A range of applications in combination with chromatography and electrophoresis is summarized. The current state of electrochemical detectors indicates that both amperometric and potentiometric detectors are on the verge of becoming tailormade detectors for micro-separation techniques.  相似文献   

16.
自行设计开发了一套便于与电泳芯片集成的一体式柱端安培检测池系统.该系统由整块透明有机玻璃精密加工而成,包括电泳芯片支架和安培检测池两部分,芯片可通过芯片插槽和不锈钢夹具固定在芯片支架上,各种检测用电极可直接通过螺母固定在安培检测池中.以100μmol/L的DA为模式分析物,分别采用直径为100、300和500μm的铂金圆盘电极与表观直径为240μm的碳纤维电极作为工作电极均在该装置上实现了良好组装和高灵敏检测.采用碳纤维工作电极对该系统的检测参数进行了优化.测试结果表明该系统在电化学清洗程序下连续六次测定100μmol/L多巴胺的峰电流相对标准偏差为3.2%,保留时间相对标准偏差为0.5%,DA的检测限为0.4μmol/L(按照S/N=3计).该系统体积小巧,测试稳定,检测灵敏度较高,工作电极更换方便,适合作为芯片电泳柱端安培检测通用平台.  相似文献   

17.
An amperometric sensor for detection of antibodies to Salmonella typhi in the serum of patients was developed. This involved usage of screen-printed electrodes and recombinant flagellin fusion protein. An indirect enzyme-linked immunosorbant assay was used for detection of antibodies to S. typhi in the patient serum. The screen-printed electrodes were made using polystyrene and graphite. These electrodes were tested for their ability to detect 1-naphthol, which is the product formed due to the hydrolysis of the substrate 1-naphthyl phosphate by the enzyme alkaline phosphatase. These electrodes were coated with recombinant flagellin fusion protein made by recombinant DNA technology and blocked with bovine serum albumin (BSA). Further they were incubated with patient serum and goat anti-human alkaline phosphatase conjugate. The immunosensing was performed by using amperometric method. Pooled human serum samples from apparently healthy individuals were used as control. Both the pooled healthy human serum samples and patient sera were subjected to Widal agglutination test and amperometric method. A 100% correlation was found between the Widal test and amperometric method. The time taken for the detection by electrochemical method is 1 h and 15 min, while the time taken by Widal test is 18 h.  相似文献   

18.
The preparation of gas diffusion electrodes and their use in an amperometric enzyme biosensor for the direct detection of a gaseous analyte is described. The gas diffusion electrodes are prepared by covering a PTFE membrane (thickness 250 μm, pore size 2 μm, porosity 35%) with gold, platinum, or a graphite/PTFE mixture. Gold and platinum are deposited by e‐beam sputtering, whereas the graphite/PTFE layer is prepared by vacuum filtration of a respective aqueous suspension. These gas diffusion electrodes are exemplarily implemented as working electrodes in an amperometric biosensor for gaseous formaldehyde containing NAD‐dependent formaldehyde dehydrogenase from P. putida [EC. 1.2.1.46] as enzyme and 1,2‐naphthoquinone‐4‐sulfonic acid as electrochemical mediator. The resulting sensors are compared with regard to background current, signal noise, linear range, sensitivity, and detection limit. In this respect, sensors with gold or graphite/PTFE covered membranes outclass ones with platinum for this particular analyte and sensor configuration.  相似文献   

19.
Peroxidase-modified electrodes: Fundamentals and application   总被引:10,自引:0,他引:10  
Peroxidase-modified amperometric electrodes have been widely studied and developed, not only because of hydrogen- and organic peroxides are important analytes but also because of the key role of hydrogen peroxide detection in coupled enzyme systems, in which hydrogen peroxide is formed as the product of the enzymatic reaction. Many important analytes, such as, aromatic amines, phenolic compounds, glucose, lactate, neurotransmitters, etc. could be monitored by using bi- or multi-enzyme electrodes. In this review the heterogeneous electron transfer properties of peroxidases are discussed as a basis for the analytical application of the peroxidase-modified amperometric electrodes, and examples are given for various peroxidase electrode designs and their application.  相似文献   

20.
芯片毛细管电泳-安培检测系统   总被引:2,自引:0,他引:2  
由于安培检测具有的高灵敏度、低成本、低能耗、易集成化便携化、与微加工技术匹配等特点,芯片毛细管电泳-安培检测系统(μCE-AD)的研究近年来得到人们广泛的关注。本文结合本课题组的研究工作,对近年来μCE-AD的研究进展进行评述;重点讨论了近年来在芯片的设计、集成化电极的制备、消除分离电压的干扰等方面的进展;同时介绍了利用分离电场拓展检测范围、阵列电极和阵列通道、化学修饰电极的应用、新型进样技术和试样预处理等方面的新成就;最后展望了未来μCE-AD的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号