首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hydrogen sorption in intermetallic B2 TiM (M = Ni, Co, Pd) with a symmetric ??5(310) tilt grain boundary and a (310) surface is studied by density functional theory methods. The effect of hydrogen on the electronic characteristics of the alloys is analyzed as a function of a sorption position at the interfaces. The hydrogen sorption energy is shown to depend on the local environment of hydrogen; on the whole, hydrogen at the interfaces prefers titanium-rich positions. The hydrogen sorption energy in metal-rich positions decreases when the d shell of the second alloy component is filled with electrons. The grain-boundary energy, the surface energy, and the hydrogen segregation energies to the interfaces are calculated. Hydrogen sorption in titanium alloys is shown to decrease Griffith work and to favor brittle fracture along tilt grain boundaries.  相似文献   

2.
Various driving forces which cause migration of grain boundaries in bicrystals are discussed. The analysis of experimental data for migration of symmetrical tilt grain boundaries 37° <001> 5 in Fe-3 wt. % Si bicrystals indicates that the migration velocity is proportional to the driving force only for relatively fast boundary movement. The observed deviation from linearity might be related to segregation of impurities at the grain boundary.  相似文献   

3.
Incoherent Z-contrast imaging in the scanning transmission electron microscope allows atom column positions to be deduced directly from the experimental image, including locations where the column separation is less than the resolution limit. Maximum entropy analysis applied to the incoherent image locates the high-Z columns to an accuracy of ±0.2 Å. Oxygen coordination at the boundary plane can be deduced by high spatial resolution electron energy loss spectroscopy, and approximate column positions determined by simple bond-valence sum calculations. Observations of 25° (=85), 36° (=5) and 67° (=13) [001] symmetric tilt grain boundaries in SrTiO3 bicrystals show that half columns are a ubiquitous feature of grain boundary structural units. The observed structural units can be combined to produce structural models for symmetric tilt boundaries over a 0–90° range. The =17 (410), =5 (310), and =5 (210) are found to be favored boundaries and the structures of all the other tilt boundaries are comprised of these units combined with =1 (100) and =1 (110) structural units. All the proposed boundary models show continuity of grain boundary structure over the entire misorientation range. The =17 (410) structural unit is asymmetric which induces microfacetting on all boundaries less than the =5, 36.87° misorientation.Work Supported by the U.S. Department of Energy under contract DE-Ac05-84OR21400.  相似文献   

4.
Grain boundary lead inclusions formed by ion implantation of mazed bicrystal aluminum films have been investigated by transmission electron microscopy. The vapor-grown bicrystal films contained mainly 90°(110) tilt boundaries with fixed misorientation but variable inclination, as well as some growth twins with 70.5°(110) symmetrical tilt boundaries and a few small-angle boundaries. It was found that the shape, size and orientation of the inclusions in the grain boundaries depend on the orientation of the aluminum grain boundary plane. Inclusions at 90°(110) tilt boundaries were invariably sharply faceted toward one aluminum grain and more rounded toward the other grain. The faceted side was a section of the cuboctahedral equilibrium shape of bulk lead inclusions in parallel topotaxy with the aluminum matrix. The rounded side, where the aluminum grain was rotated by 90° with respect to the lead lattice, approximated a spherical cap. At specific low-energy segments of the grain boundary where a (100) plane in grain 1 meets an (011) plane in grain 2, only two of several possible shapes were observed. One of these was preferred in as-implanted samples while both types were found after melting and re-solidification of the lend inclusions. The observations are discussed in terms of a modified Wulff construction.  相似文献   

5.
Hydrogen that is accumulated within the grain boundaries can lead to a decrease of the critical strain required to fracture the material. The paper presents results of ab initio modelling of hydrogen–grain boundary interaction in ferromagnetic bcc iron. Modelling was performed using density functional theory with generalised gradient approximation (GGA’96), as implemented in WIEN2k package. Three fully relaxed tilt grain boundaries, Σ5(310), Σ5(210) and Σ3(111), were studied. The supercells contained 40–48 atoms, i.e. 20–24 atoms in each of the two ‘grains’. Calculated formation energies of grain boundaries is 1.44, 1.83 and 1.46 J/m2 and the maximum binding (trapping) energies of hydrogen to the boundaries are 0.43, 0.83 and 0.39 eV, respectively. These values are close to other researchers’ data. The higher value of trapping energy of the Σ5(210) boundary is probably due to the asymmetrical atom configurations resulting from mutual rigid shift of the two grains that was necessary to be introduced to provide optimal distances between Fe atoms, unlike the other two boundary types.  相似文献   

6.
A symmetrical tilt =5[001]/(310) grain-boundary and its surrounding matrix in an Al-5% Mg alloy, as prepared by cold rolling and annealing, have been studied by conventional transmission electron microscopy, high-resolution electron microscopy, and analytical electron microscopy. EDS measurements of the Mg concentration in the bulk and at grain boundaries indicate variations of Mg content ranging between 4 to 11 atomic percent. This variation is attributed to local ordering of Mg atoms in the alloy. HREM images show that the boundary runs parallel to the median of (310) and contains segments primarily composed of two types of structural unit. One unit contains seven atomic sites, while the other contains eight. In both types of unit, the grain-boundary coincident site lattice is continuous across the interface and exhibits periodicity in its core structure. The core structure, which is characterized by kite-like structural units containing seven atoms, conforms well with the structure of =5 grain boundaries in pure FCC materials. The presence of atomic-scale ordering of Mg atoms along [001] of the boundary core is associated with the existence of the structural unit possessing eight atomic sites.  相似文献   

7.
Behaviour of stress corrosion cracking (SCC) in a series of pure copper bicrystals with a symmetrical 111-tilt boundary has been investigated. Tests were performed by the slow strain rate technique (SSRT) in 1M NaNO2 solutions. The small-angle tilt bicrystals fractured in both intergranular and transgranular manners accompanied by a large amount of plastic strain to fracture while the large-angle bicrystals fractured in almost intergranular manner with a smaller plastic strain. Susceptibility of SCC increases with increasing misorientation and becomes relatively constant in large-angle grain boundaries. The local minima appeared at the 7(321) and 3(211) boundaries, suggesting that the susceptibility was partially affected by grain boundary energy. Stress concentration generated by the pile-up of trapped dislocations at the grain boundary could account for the high susceptibility of the intergranular SCC in large-angle grain boundaries.  相似文献   

8.
The paper reports the diffusion coefficients of grain boundary diffusion and grain boundary assisted lattice diffusion of Pd in Mg in Pd/Mg/Si system, a useful material for hydrogen storage, at 473 K in vacuum. The grain boundary diffusivity is measured by Whipple model and grain boundary assisted lattice diffusivity by plateau rise method using Pd depth profiles constructed by Rutherford backscattering spectrometry. It is established that grain boundary diffusivities are about six orders of magnitude faster than lattice diffusivities. Fine grained microstructure of Pd film, high abundance of defects in Mg film and higher stability associated with Pd-Mg intermetallics are responsible for the diffusion of Pd into grain boundaries and subsequently in the interiors of Mg. Besides the indiffusion of Pd, annealing also brings about an outdiffusion of Mg into Pd film. Examination by nuclear reaction analysis involving 24Mg(p,p′γ)24Mg resonance reaction shows the occurrence of Mg outdiffusion. Minimization of surface energy is presumably the driving force of the process. In addition to Pd/Mg interface, diffusion occurs across Mg/Si (substrate) interface as well on increasing the annealing temperature above 473 K. These studies show that dehydrogenation of films accomplished by vacuum annealing should be limited to temperatures less than 473 K to minimize the loss of surface Pd, the catalyst of the hydrogen absorption-desorption process and Mg, the hydrogen storing element, by way of interfacial reactions.  相似文献   

9.
M. A. Tschopp 《哲学杂志》2013,93(25):3871-3892
Atomistic simulations were employed to investigate the structure and energy of asymmetric tilt grain boundaries in Cu and Al. In this work, we examine the Σ5 and Σ13 systems with a boundary plane rotated about the ? 100 ? misorientation axis, and the Σ9 and Σ11 systems rotated about the ? 110 ? misorientation axis. Asymmetric tilt grain boundary energies are calculated as a function of inclination angle and compared with an energy relationship based on faceting into the two symmetric tilt grain boundaries in each system. We find that asymmetric tilt boundaries with low index normals do not necessarily have lower energies than boundaries with similar inclination angles, contrary to previous studies. Further analysis of grain boundary structures provides insight into the asymmetric tilt grain boundary energy. The Σ5 and Σ13 systems in the ? 100 ? system agree with the aforementioned energy relationship; structures confirm that these asymmetric boundaries facet into the symmetric tilt boundaries. The Σ9 and Σ11 systems in the ? 110 ? system deviate from the idealized energy relationship. As the boundary inclination angle increases towards the Σ9 (221) and Σ11 (332) symmetric tilt boundaries, the minimum energy asymmetric boundary structures contain low index {111} and {110} planes bounding the interface region.  相似文献   

10.
王海燕  高雪云  任慧平  张红伟  谭会杰 《物理学报》2014,63(14):148101-148101
本文采用重合位置点阵理论构建了 α-Fe的Σ3[110](112)对称倾转晶界模型,通过基于密度泛函理论的平面波超软赝势方法研究了稀土La元素在 α-Fe中的占位倾向. 结果表明,La在 α-Fe晶界的杂质形成能最低,因而La原子倾向于占据晶界区;掺杂La前后的 α-Fe晶界电子结构计算结果显示,La占位于 α-Fe晶界会使体系中的电荷发生重新分配,将提供更多电子用于晶界区成键,使得Fe原子得到更多的电子,这将导致掺杂区原子间结合有离子化趋势,从而使La与晶界区相邻Fe原子之间的相互作用加强,也使晶界原子与晶界两侧Fe原子的键合加强,从能量角度解释了材料宏观力学性能变化的原因;计算同时发现,La加入后,也使晶界上的原子成键区态密度左移,降低了体系的总能量,使晶界结构更为稳定. 关键词: La α-Fe')" href="#">α-Fe 晶界 第一性原理  相似文献   

11.
The diffusion coefficients of vacancies and interstitials along symmetrical tilt grain boundaries in molybdenum have been calculated using the molecular dynamics method. The migration energies of defects have been obtained. The activation energy and coefficients of grain boundary self-diffusion have been deter-mined. A comparison of the obtained results with the studies of other authors indicates that boundaries formed between particles in the powder in sintering experiments have a higher diffusion activity as compared to stable grain boundaries in polycrystals.  相似文献   

12.
Migration of differently oriented grain boundaries was studied in the =5, 36.9°[100] tilt bicrystals of an Fe-3mass%Si alloy by the modified reversed-capillary technique. The principles of this method are outlined and discussed in connection with the application of multiple annealing of a single sample. It is shown that the errors introduced by both heating and cooling periods and by possible existence of an incubation period do not exceed the scatter of experimental data. A linear dependence between grain boundary migration velocity and driving force was found in most cases. The measured values of the product of grain boundary mobility and energy for individual grain boundaries differ substantially. The values of activation energy of migration of 332 kJ/mol, 392 kJ/mol, and 97 kJ/mol were found for the, {01}, {02} and (001)/(0 4) grain boundaries, respectively.  相似文献   

13.
When highly inclined against the {111} plane of the coherent twin boundary, 3 110 tilt boundaries in Cu or Ag have a complex structure. As the boundary plane approaches the symmetrical {211} orientation, the grain boundaries decompose into two phase boundaries. Between these phase boundaries the metal adopts a rhombohedral crystal structure, denoted as 9R. Not the {211}-oriented boundary, but a boundary inclined by 8° against {211} has the minimum energy in this family of grain boundaries with 9R zone. Using high resolution transmission electron microscopy, we have studied the atomistic structure of this special boundary. An iterative structure refinement based on quantitative image analysis reveals the atomistic structure of the grain boundary at a well-defined level of confidence. Comparing the refined grain boundary structure with a model obtained by molecular statics calculations exposes small, but significant discrepancies. These probably arise because in the model the stacking fault energy is too small and the short distance repulsion is too weak. Grain boundaries of equivalent geometry in Ag and Al exhibit different widths of the 9R zone. Experimental observations support a theory relating the equilibrium width of the 9R slab to the stacking fault energy and the elastic properties of the material.Presented at the Workshop on High-Voltage and High Resolution Electron Microscopy, February 21–24, 1994, Stuttgart, Germany.  相似文献   

14.
The molecular dynamics method is used to investigate an atomic configuration in the structure of asymmetric tilted grain boundaries for the ordered CuAu I alloy with FCT symmetry and L10 structure. Investigations are performed for three misorientation angles: 7, 16, and 22° and grain boundaries with <100 > and <001 > tilt axes. The distinctive features of the structural grain boundary reorganization and diffusion mechanisms are elucidated at different temperatures.  相似文献   

15.
An atomic study of [0 0 1] symmetrical tilt grain boundary (STGB) in iron has been made with modified analytical embedded atom method (MAEAM). The energies of two rigid-body crystals joined together directly are unrealistically high due to very short distance between atoms near grain boundary (GB) plane in either crystal. For each of 27 (h k 0) GB planes, a relative slide between grains could result in a decrease in GB energy and a minimum value could be obtained at specific translation distance Lmin/L(h k 0). Three lowest minimum-energies are corresponding to (3 1 0), (5 3 0) and (5 1 0) boundary successively, from minimization of GB energy, these boundaries should be preferable in (h k 0) boundaries. In addition, the minimum energy increases with increasing ∑, but decreases with increasing interplanar spacing.  相似文献   

16.
To understand the electronic properties of doped grain boundaries, we reviewed the atomic scale techniques currently available to study the electronic structure at pristine SrTiO3 grain boundaries. The knowledge gained from the pristine boundaries is used to interpret experimental and theoretical results from a Mn doped 5 SrTiO3 grain boundaries. Mn atoms are shown to preferentially substitute at specific Ti sites at the grain boundary core. Furthermore, the formal oxidation state of the Mn atoms at the grain boundary core was found to be reduced compared to the Mn atoms substituting for Ti in the bulk. This change of valence did not, however, significantly affect the atomic structure of the grain boundary, as determined by Z-contrast imaging and electron energy-loss spectroscopy, which revealed similar fine-structure features at both the doped and pristine grain boundary. We conclude, therefore, that composition and atomic structure have different effects on the local electronic structure and should be treated separately in any segregation and electrical conductivity models for grain boundaries.  相似文献   

17.
This work presents the results of a comparative molecular dynamics study showing that relaxed random grain boundary structures can be significantly non-planar at the nano-scale in fcc metals characterized by low stacking fault values. We studied the relaxed structures of random [1?1?0] tilt boundaries in a polycrystal using interatomic potentials describing Cu and Pd. Grain boundaries presenting non-planar features were observed predominantly for the Cu potential but not for the Pd potential, and we relate these differences to the stacking fault values. We also show that these non-planar structures can have a strong influence on dislocation emission from the grain boundaries as well as on grain boundary strain accommodation processes, such as grain boundary sliding. We studied the loading response in polycrystals of 40 nm grain size to a level of 9% strain and found that the non-planar grain boundaries favour dislocation emission as a deformation mechanism and hinder grain boundary sliding. This has strong implications for the mechanical behaviour of nano-crystalline materials, which is determined by the competition between dislocation activity and grain boundary accommodation of the strain. Thus, the two interatomic potentials for Cu and Pd considered in this work resulted in the same overall stress–strain curve, but significantly different fractions of the strain accommodated by the intergranular versus intragranular deformation mechanisms. Strain localization patterns are also influenced by the non-planarity of the grain boundary structures.  相似文献   

18.
The intrinsic structure of different tilt grain boundaries in bcc molybdenum is determined by electron microscopy and compared to the ones obtained after an annealing treatment of the same boundaries in presence of different impurities like carbon and nickel. Specially grown bicrystals with tilt axes parallel to [001] and [011] are used. The boundaries correspond to the major coincidence relationships ∑ = 5, ∑ = 3 and ∑ = 11. Their experimental atomic structure is compared to calculated ones. After the treatments in presence of carbon or nickel the new structure is determined by electron microscopy from the structural and chemical aspect. After a treatment in presence of carbon the ∑ = 5[001]{310} boundary contains either a segregation or a very thin precipitate layer of a new MoCx quadratic phase. In presence of nickel, the physical phenomenon is possibly a wetting of the boundary. The different [011] tilt boundaries have a different behavior according to their respective energy.  相似文献   

19.
Combined high-resolution electron microscopy, computer modeling, and image simulations are used to study the structure of the =5 (210) [001] tilt boundary in the ordered compound AuCu3. On the experimental side, we have prepared thin samples cut in a bulk bicrystal containing an interface close to the above (tilt 37°). The high-resolution images obtained at 400 kV along the [001] tilt axis show that among possible configurations, the boundary adopted predominantly a symmetrical one. Theoretically, using the standard geometrical approach, we derived possible atomic configurations of the boundary and we identified some of the defects allowing for the coexistence between these variants. Finally, we performed energy minimizations using these geometrical models and an n-body potential adapted to this compound. In agreement with the experiment, one of the two possible symmetrical variants is associated to the lowest excess energy. Moreover, the computations show that large variations affect the spacing of (210) atomic planes near the boundary.  相似文献   

20.
The time-of-flight technique combined with a surface-ionization-based detector has been used to investigate the yield and energy distribution of sodium atoms escaping in electron-stimulated desorption (ESD) from adlayers on the surface of molybdenum oxidized to various degrees and maintained at T=300 K as functions of incident electron energy and surface coverage by sodium. The sodium-atom ESD threshold is about 25 eV, irrespective of sodium coverage and extent of molybdenum oxidation. Molybdenum covered by an oxygen monolayer exhibits secondary thresholds at ∼40 eV and ∼70 eV, as well as low-energy tailing of the energy distributions, its extent increasing with surface coverage by sodium Θ. The most probable kinetic energies of sodium atoms are about 0.23 eV, irrespective of the degree of molybdenum oxidation and incident electron energy at Θ=0.125, and decrease to 0.17 eV as the coverage grows to Θ=0.75. The results obtained are interpreted within a model of Augerstimulated desorption, in which adsorbed sodium ions are neutralized by Auger electrons appearing as the core holes in the 2sO, 4sMo, and 4pMo levels are filled. It has been found that the appearance of secondary thresholds in ESD of neutrals, as well as the extent of their energy distributions, depend on surface coverage by the adsorbate. Fiz. Tverd. Tela (St. Petersburg) 40, 768–772 (April 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号