首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The configuration of the lowest excited state of acenaphthenone, S1(π, π*) or T1(π, π*), depending on the solvent, dominates photoluminescence. The T1(n, π*) state in aprotic organic solvents is responsible for the phosphorescence of acenaphthenone. The wavelengths of the phosphorescence measured in benzene are 576 nm and 635 nm (vibronic) with 3.3 × 10?4 quantum efficiency. However, the S1(π, π*) state in protic solution which dominates the fluorescence emission depending upon acidity is the most distinctive feature of acenaphthenone. The wavelengths of the emissions are 446 nm under water solvation with 0.185 quantum efficiency and 538 nm with 0.097 quantum efficiency under high acidity. The emission at 446 nm is assigned from a H-bonded keto-form excited state, whereas the emission at 538 nm is probably due to the excited state of protonated keto-form. The pKa value in aqueous solution measured by diminution of fluorescence in basic solutions is 12.5 ± 0.4.  相似文献   

2.
Fluorescence and excitation spectra of spironaphthoxazine (SNO) in various solvents have been investigated systematically. The fluorescence in low-polar solvents normally originated from SNO in the excited state. In protic high-polar solvents, fluorescence from an excited intermediate species (X* h) relaxed from a part of the excited SNO by breaking a C-O bond in the oxazine ring was also observed. It has been found that a ground-state intermediate species (Xs), transformed from a part of ground-state SNO, is directly excited to its excited state (Xs *), which displays fluorescence in aprotic high-polar solvents.  相似文献   

3.
Molecular geometries of the nucleic acid bases thymine, cytosine and uracil in the ground and the lowest two singlet excited states were optimized using the ab initio approach employing the 4-31G basis set for all the atoms except the amino group of cytosine for which the 6-311+G* basis set was used. The excited state calculations were performed employing configuration interaction involving singly excited configurations (CIS). Vibrational frequencies were computed in order to examine the nature of the stationary points on the potential energy surfaces obtained by geometry optimization. While the ground state geometries of uracil and thymine (except the methyl group hydrogens) are planar, the corresponding excited state geometries were found to be significantly nonplanar. In the case of cytosine, the amino group is pyramidal and the rest of the molecule is only slightly nonplanar in the ground state, but the excited state geometries are appreciably nonplanar. In particular, consequent to the S2(n–π*) excitation of cytosine, the amino group plane is strongly rotated. While thymine is stable in the S2(π–π*) excited state, uracil appears to be dissociative in the corresponding excited state.  相似文献   

4.
The geometries of 7-azaindole (7AI), its tautomer (7AT), and 7AI–H2O and 7AT–H2O complexes were optimised in the ground state and some low-lying singlet excited states using the 3-21G basis set. Differences of total energies of the optimised ground and excited states and the vertical excitation energies of these systems were used to explain the observed electronic spectra. Effect of solvation of these systems in bulk water was studied using the polarized continuum model (PCM). The mode of binding of a water molecule in the S2(n–π*) excited state of 7AI was found to be quite different from those in its ground and π–π* excited states. It is shown that crossing of the lowest two singlet excited-state potential surfaces S1(π–π*) and S2(n–π*) of 7AI occurs in the vapour phase under geometry relaxation while on interaction with water, the S2(n–π*) excited state is raised up appreciably going even above the S3(π–π*) excited state. Ground- and excited-state molecular electrostatic potential mapping was carried out, which led to valuable information regarding the nature of excited states of the above-mentioned systems.  相似文献   

5.
Two anomalous emission bands in the fluorescence spectrum of 3,4-benzpyrene, dissolved in 2-methylpentane, have been studied as a function of temperature. These emissions originate from the second excited singlet state S2, and from a vibrationally excited S1 (S*1) respectively. From the temperature dependence of the relative yield and the decay time of the S*1 emission it can be concluded that the vibrational relaxation of this state is hampered. The rate constant for this relaxation process is smaller that 4 > 62;x 107 sec?1.  相似文献   

6.
The structure and vibrational frequencies of 1,4-benzodioxan in its S1(π, π*) electronic state have been calculated using the GAUSSIAN 03 and TURBOMOLE programs. The results have been compared to experimental data and also to the ground state. Structural data for the T1(π, π*) state have also been calculated. The theoretical frequencies agree very well with the experimental values for the S0 electronic ground state but are less accurate for the S1 excited state. Nonetheless, they provide valuable guidance for excited state calculations.  相似文献   

7.
CNDO/s-CI and VE-PPP methods have been employed to calculate the dipole moments of the bases of nucleic acids in the ground and excited states. A component analysis in terms of μhyb(σ), μch and μπ has been done using the CNDO/s-CI method and these results have been compared with those obtained by the CNDO/2 and IEHT methods. It is observed that while the CNDO/2 and CNDO/s-CI methods give almost the same total dipole moments, component-wise their predictions are very different.Dipole moments of the molecules have also been studied for the lowest excited singlet and triplet π* ← π states. It is observed that the conventional method of calculating dipole moments using changes of only the net charges in the excited state does not give correct results for uracil and thymine, for which experimental results are available. Considering deformed non-planar excited state geometries for these molecules, the observed excited state dipole moments have been explained. A method has been suggested to include the effects of non-planarity while calculating the properties of a complex molecule in a π* ← π excited state. For adenine, guanine and cytosine, the excited state dipole moments are found to be smaller than the ground state values.  相似文献   

8.
The properties of formamide, its protonated form and interaction complexes with lithium and sodium cations were studied in electronically excited singlet states by means of high-level multireference ab initio methods. The vertical excitation energies show a marked influence on protonation with particular large effects found for the O-protonated form as compared to neutral formamide. Complexation with Li+ and Na+ leads to a pronounced shift of the nO–π* state to higher energies while the π–π* state moves in opposite direction. Geometry optimizations in the lowest excited singlet show strong geometrical effects leading to pyramidalization at the N and C atoms. The photodynamical simulations performed for formamide in the first excited singlet state show that the main primary deactivation path is CN dissociation with a lifetime of about 420?fs.  相似文献   

9.
Absorption and fluorescence spectra of 1,5-, 1,6- and 4,6-benzo[h]naphthyridines (BN) were examined in Shpolskii matrices and in n-butanol at 77 K. Vibrational analysis of quasilinear spectra of 1,6- and 4,6-BN in n-hexane matrices was performed. Calcula- tions of the electronic structure of the isomers examined were done using a modified INDO CI method. The results of the experiments and calculations prove the π, π* state to be the lowest excited singlet state of 1,6- and 4,6-BN molecules; in 1,5-BN molecule the S1 (n, π*) state is strongly perturbed by the nearby s2(π π*) state.  相似文献   

10.
C-Br bond dissociation mechanisms of 2-bromothiophene and 3-bromothiophene at 267 nm were investigated using ion velocity imaging technique. Translational energy distributions and angular distributions of the photoproducts, Br(2P3/2) and Br*(2P½), were obtained and the possible dissociation channels were analyzed. For these two bromothiophenes, the Br fragments were produced via three channels: (i) the fast predissociation following the intersystem crossing from the excited singlet state to repulsive triplet state; (ii) the hot dissociation on highly vibrational ground state following the internal conversion of the excited singlet state; and (iii) the dissociation following the multiphoton ionization of the parent molecules. Similar channels are involved for photoproduct Br* of the 2-bromothiophene dissociation at 267 nm; whereas for the photoproduct Br* of 3-bromothiophene, the dissociation channel via internal conversion from the excited singlet state to highly vibrational ground state became dominating and the fast predissociation channel via the excited triplet state almost disappeared. Informations about the relative contribution, energy disposal, and the anisotropy of each channel were quantitatively given. It was found that with the position of Br atom in thienyl being far from S atom, the relative ratios of products from channels (i) and (ii) decreased obviously and the anisotropies corresponding to each channel became weaker.  相似文献   

11.
《Chemical physics》1987,113(2):223-230
Hyperspherical H2O* resonances excited to energies ≲1 eV above the electronic ground state H2O* → H + OH dissociation threshold have lifetimes ≈ 45 ps, at least ten times longer than near-degenerate local H2O* resonances. The results are evaluated and analysed using fast-Fourier-transform (FFT) propagation of quantum wavefunctions representing H2O stretching vibrations modeled by coupled Morse oscillators.  相似文献   

12.
Absorption bands of the pyrene excited singlet state (S*1) and of the pyrene excimer have been assigned.  相似文献   

13.
The excited state lifetimes of uracil, thymine and 5-fluorouracil have been measured using femtosecond UV fluorescence upconversion in various protic and aprotic polar solvents. The fastest decays are observed in acetonitrile and the slowest in aqueous solution while those observed in alcohols are intermediate. No direct correlation with macroscopic solvent parameters such as polarity or viscosity is found, but hydrogen bonding is one key factor affecting the fluorescence decay. It is proposed that the solvent modulates the relative energy of two close-lying electronically excited states, the bright ππ* and the dark nπ* states. This relative energy gap controls the non-radiative relaxation of the ππ* state through a conical intersection close to the Franck–Condon region competing with the ultrafast internal conversion to the ground state. In addition, an inverse isotope effect is observed in D2O where the decays are faster than in H2O.  相似文献   

14.
A simple theoretical model is presented to explain the observed anomalous dual phosphorescences of certain aromatic carbonyl compounds in some rigid media. The phenomenon of dual phosphorescence for large molecules violates the well-known Kasha rule stating that the emission can occur only from the lowest excited electronic state of a given multiplicity. For a small energy gap between the second triplet state (T2) and the first triplet state (T1), the sparse density of T1 vibronic levels, isoenergetic with the T2 vibrationless level, leads to a rather slow T2 → T1 radiationless process which is unable to quench the T2 emission completely. Two cases of T1 = 3*, T2 = 3ππ* and T1 = 3ππ*, T2 = 3* are discussed at both the low-temperature and the high-temperature limits.  相似文献   

15.
Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophe-none (DMABP) and its hydrogen-bonded DMABP-MeOH dimer. It is found that, in non-polar aprotic solvent, the transitions from S0 to S1 and S2 states of DMABP have both n→π* and π→π* characters, with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group. But when the intermolecular hydrogen bond C=O…H-O is formed, the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two low-lying electronically excited states increases. To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state, the potential energy curves for con-formational relaxation are calculated. The formation of twisted intramolecular charge trans-fer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process. In addition, the decay of the S1 state of DMABP-MeOH dimer to the ground state, through nonradiative intermolecular hydrogen bond stretching vibrations, is facilitated by the formation of the hydrogen bond between DMABP and alcohols.  相似文献   

16.
Molecules of a series of heteroaromatic azides in the ground (S 0) and the lowest excited singlet (S 1) states were calculated by the PM3 semiempirical method. It was shown that in the S 0 state, the azide group in all the azides has quasi-linear geometry and a significant positive charge on the two terminal nitrogen atoms. The azide photoactivity is determined by the population of the σ NN * orbital in the excited state, which is unoccupied in the ground state. The population of this orbital was found to depend on the size and charge of the aromatic π system. For the initial members of this azide series, the σ NN * orbital is populated in both neutral and protonated forms. This is consistent with the experimental data and means that these azides are photoactive. With an increase in the size of the aromatic system, the energetic gap between the σ NN * orbital and LUMO increases. As a result, the σ NN * orbital is not populated in the S 1 state when a particular threshold size of the π system is achieved, and the azide becomes photo-inactive.__________Translated from Khimiya Vysokikh Energii, Vol. 39, No. 4, 2005, pp. 259–266.Original Russian Text Copyright © 2005 by Budyka, Oshkin.  相似文献   

17.
The effects of CO complexation on highly exothermic vanadium oxidation reactions is evaluated. We study the chemiluminescent (CL) reaction products formed when vanadium vapor entrained in Ar or CO is oxidized by O3 or NO2. The multiple collision V+Ar+O3→VO*(C 4Σ, 4Φ, 2X)+Ar+O2 reactive encounter yields two previously unreported VO excited states, whereas the V+Ar+NO2→VO*+Ar+NO reactive encounter populates states up to and including VO* C 4Σ. The multiple collision V+nCO+O3 reactive encounter would appear to form a VOCO excited state complex, emitting in the region 420–560 nm, via the formation and oxidation of V(CO)2 viz. V(CO)2+O3→VOCO*+CO+O2 and a relaxed VO excited state emitter via V+nCO+O3→VO*+nCO+O2 where the VO excited state excitation is mediated by V–CO complexation. In complement, the much less exothermic V–NO2 encounter displays an emission which, in concert with previous studies of CO complexation, suggests the formation of a VO(CO)2 excited state complex viz. V(CO)2+NO2→VO(CO)2*+NO. The experiments characterizing CL are complemented by comparative laser-induced fluorescence studies of the VO X 4Σ–CO and Ar interactions and their influence on the VO C 4Σ–X 4Σ laser-induced excitation spectrum. These studies, in conjunction with further attempts to excite LIF in the 420–560 nm region, suggest that the observed complex emissions result primarily from VO excited state interactions. Complementary time-of-flight mass spectroscopy of vanadium and vanadium-oxide–carbonyl complex formation demonstrates the formation of V(CO), V(CO)2, V2(CO), and VOCO, the latter three of which demonstrate clear metastable-ion dissociation peaks for the processes VOCO+→V++CO2, V(CO)2+→V++2CO, and V2(CO)+→V2++CO, suggesting that these vanadium complexes when formed in a reaction-based environment may be photodissociated with light in the visible and ultraviolet regions.  相似文献   

18.
A practical procedure for the determination of branching ratios for reactions which lead to either excited or electronically ground state products is outlined. The method is applied to four reactions which could (on energetic grounds) produce an electronically excited iodine atom. No case of a complete inversion is found, but one reaction (F + HI) is predicted to yield a statistical, (one half), I*(2P1/2) to I(2P3/2) ratio.  相似文献   

19.
Double fluorescence of p-dimethylacetophenone (DMAPh) in CH3CN and m-methyl-p-cyanodimethylaniline (MCDMA) in CH2Cl2 has been observed and analyzed in terms of reversible excited state isomerisation of the primary excited form b* to the strongly polar rotamer a*. Using the oxygen quenching technique, the kinetics of the reactions have been solved and all rate constants separated. The “formal” lifetimes of the species b*, τb ≡ (kbf + kbd + kba)?1, are 1 ps and 2.2 ps for DMAPh and MCDMA, respectively. The first value fits well to the reorientation relaxation time of acetonitrile.  相似文献   

20.
Quantum-chemical calculations of the electronic structure of the high-energy states of NO2 were performed by the density functional method with symmetrized Kohn–Sham formalism. The results from the DFT calculation of the NO2* NO_2^* excited states agree well with experimental data and ab initio calculations. The reactivity of the long-lived excited state NO2*( [(C)\tilde]2A" ) NO_2^*\left( {{{\tilde{C}}^2}A'} \right) during photochemical conversion to NO3 was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号