首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>一、引言宇宙辐射电磁波谱的任何一个波段背后,都有天体的物理现象和机理,只要能感知到,就可以寻找它们的规律。20世纪30年代,美国贝尔实验室工程师卡尔央斯基在短波高频波段偶然收到来自地球之外的天体辐射,开启了射电天文的大门。自此,电磁波成为了天文学家观测天体辐射的核心手段之一。由于地球空间存在的比较浓密的电离层,能够反射短波和中波波段的人造电磁波,使得电磁  相似文献   

2.
 宇宙辐射电磁波谱的任何一个波段背后,都有天体的物理现象和机理,只要能感知到,就可以寻找它们的规律。20世纪30年代,美国贝尔实验室工程师卡尔央斯基在短波高频波段偶然收到来自地球之外的天体辐射,开启了射电天文的大门。自此,电磁波成为了天文学家观测天体辐射的核心手段之一。由于地球空间存在的比较浓密的电离层,能够反射短波和中波波段的人造电磁波,使得电磁波无法逃出地球范围。但与此同时,来自地球以外低于10兆赫兹的电磁辐射,也无法透过地球电离层到达地面。可以说,这个波段的天文观测窗口被地球电离层“屏蔽”了。与地球相比,月球的电离层非常稀薄,在其表面的射频观测下限可以达到500 kHz,在夜间还会更低。利用月球背面“干净”电磁环境开展低频射电探测,是全世界天文学家梦寐以求的事情,将填补低频射电观测的空白。因此,嫦娥四号月球着陆探测为科学家提供了在月球背面和月球空间开展低频射电天文研究的绝佳起步机会。  相似文献   

3.
一个了解宇宙的新窗口——分子天体物理学进展介绍   总被引:1,自引:0,他引:1  
 二次大战中发展起来的雷达及微波技术推动了微波波谱学及射电天文的发展.1944年荷兰的范德胡斯特首先考虑了用射电望远镜检测广泛存在于星云之中的氢原子21厘米微波谱线(它来自氢基态超精细结构能级间的跃迁)的可能性.这个想法在1951年实现.于是天文谱线的研究由光学波段扩展到射电波段.氢21厘米谱线的观测取得了丰硕成果并积累了用微波谱线观测星际气体的经验.天文学家认识到微波特别适合于研究低温的星云,这种星云不辐射可见光并且阻碍可见光透过,而微波谱线却能携带着星云深处的各种信息投向地球.  相似文献   

4.
 天体物理学是天文学与物理学的交叉学科,是20世纪自然科学发展的一个极其重要的分支。现代天体物理学的重要探测手段之一是借助射电技术设备接收并研究宇宙天体的辐射。这些辐射按波长可分为若干波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。按观测的电磁波段可分为光学天文学、射电天文学和空间天文学等。  相似文献   

5.
正天体物理学是天文学与物理学的交叉学科,是20世纪自然科学发展的一个极其重要的分支。现代天体物理学的重要探测手段之一是借助射电技术设备接收并研究宇宙天体的辐射。这些辐射按波长可分为若干波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。按观测的电磁波段可分为光学天文学、射电天文学和空间天文学等。传统的观测是在  相似文献   

6.
超级天眼     
正2016年9月25日,众人瞩目的"超级天眼"500米口径球面射电望远镜在贵州平塘的山洼中落成启用。自古人类就对宇宙充满了好奇和幻想,许多科学家为此进行了不懈的努力。在射电天文领域我国一直处于空白,近年相继建成了5座口径从25米到65米不等的射电望远镜,但与美、德等国相比,我国的射电望远镜的观测能力还相对有限。中国500米口径球面射电望远镜的启用,使人类在对宇宙的  相似文献   

7.
 脉冲星是20世纪60年代轰动全球的天文学四大发现之一,它是由英国剑桥大学射电天文台的休伊什教授和他的学生贝尔于1967年在研究“行星际闪烁”时偶然发现的。  相似文献   

8.
俞云伟 《物理》2021,(6):371-377
中子星概念的形成既是人们对物质基本结构认识的一个自然推论,同时也是理解恒星演化的一个必然环节.自1967年通过发现射电脉冲星证实了中子星的存在以来,基于半个多世纪的多波段、多信使观测,人们已经发现了数以千记的多种类型中子星,了解了单个中子星的电磁辐射机制、中子星双星系统的相互作用以及双中子星系统的引力波辐射等等,并在多...  相似文献   

9.
<正>宇宙线的起源作为科学难题已经长达一个世纪。近年随着GeV、TeV伽马射线天文望远镜的发展,探测到了一批高能和甚高能伽马射线超新星遗迹(Supernovae Remnant, SNR),表明超新星遗迹的电磁辐射,不仅从低频射电波段跨越到X射线波段,而且延伸至伽马射线波段,是宇宙中重要的伽  相似文献   

10.
《物理与工程》2013,23(1):64
大型射电天文望远镜搜寻探测和认证记录宇宙中各种天体系统发出的微弱射电电磁波信号(如脉冲星、类星体、星系中性氢、天体喷流等),要求具有高灵敏度和高角分辨率.接收机是决定射电天文望远镜探测性能的关键部件,需要极高的灵敏度和很强的抗干扰能力,技术要求非常高.人类活动与日俱增,射电天文望远镜的工作性能容易受到电磁环境干扰的严重影响.2011年7月下  相似文献   

11.
陈学雷 《物理》2023,(5):297-308
宇宙黑暗时代是指宇宙大爆炸刚刚结束,第一代恒星和星系尚未形成的时期,这时的宇宙“鸿蒙未开”,蕴藏着宇宙起源阶段所遗留的大量宝贵信息。这一时期宇宙中性氢气体产生的21 cm信号为观测宇宙黑暗时代提供了探针,但这一信号现已红移到米波、十米波甚至百米波频段,在这一频段有其他天体特别是银河系产生的巨大前景辐射,在地球上的观测还受到地球电离层的吸收、折射以及多种电磁干扰,因此其观测具有极大的挑战性。利用月球背面或月球轨道进行观测具有优越的条件,可以避免电离层和电磁干扰对低频射电观测的影响。随着重返月球热潮的兴起,美国、欧洲、印度等国和中国都在积极酝酿月基天文特别是低频射电天文研究,打开低频电磁观测的新窗口,实现对宇宙黑暗时代和宇宙起源的探测。文章将介绍关于宇宙黑暗时代、宇宙黎明的研究进展以及利用月球开展低频射电天文观测的动向,并简要介绍中国提出的鸿蒙绕月卫星阵列计划。  相似文献   

12.
空间硬X射线调制望远镜   总被引:5,自引:0,他引:5  
用宇宙作为物理实验室,探索在地球上无法企及的条件下,例如极早期宇宙或黑洞视界附近强引力场中的物理规律,已成为新世纪物理学和天文学共同的前沿课题;空间天文观测是其中一个最重要的研究途径.自主研制和发放空间硬X射线调制望远镜(HXMT),实现中国空间天文卫星零的突破,是中国<"十一·五"空间科学发展规划>的目标之一.HXMT将实现宽波段X射线(1-250 keV)巡天,其中在硬X射线波段具有世界最高灵敏度和空间分辨率,发现大批被尘埃遮挡的超大质量黑洞和未知类型天体,探测宇宙硬X射线背景辐射;HXMT还将通过对黑洞和其他高能天体宽波段X射线时变和能谱的观测,研究致密天体极端物理条件下的动力学和辐射过程.基于成像技术创新提出HXMT项目迄今已有15年,能不能抓住技术创新所提供的科学机遇仍然是一个严重的挑战.  相似文献   

13.
暗能量约占宇宙总密度的3/4,但其与普通物质的相互作用非常微弱,因此对它的探测主要是通过对宇宙膨胀历史和结构形成的精密观测间接进行的.为了提高研究的精度和可靠性,需要综合多种观测手段.目前的大部分暗能量观测实验采用光学方法,而射电观测提供了一种不同的、有独特优势的方法,但目前还处在起步阶段.我国在射电天文及相关技术方面有一定基础,且国内已有电磁环境良好的站址,有很好的条件开展这方面的研究,并有可能在这一领域中取得领先.文章介绍了作者已开始进行的天籁计划实验以及这一实验中积累的经验和研发的技术,这有助于中国参与国际上空前巨大的平方千米阵(SKA)射电望远镜项目,并在其中发挥作用.  相似文献   

14.
空间X射线观测确定脉冲星星历表参数精度分析   总被引:1,自引:0,他引:1       下载免费PDF全文
脉冲星星历表维持着脉冲星导航所需的时空基准, 其精度直接影响着航天器导航定位结果, 是脉冲星导航系统的基本要素. 本文分析了脉冲星空间观测精度的估计方法, 探索性地研究了基于空间X射线观测获取星历表参数的可行性. 通过建立星历表参数拟合模型, 采用大样本重复事件仿真分析了空间X射线观测精度, 研究了星历表参数确定精度与观测精度、观测时间及观测频次的关系. 研究结果表明, 空间X射线观测可以确定脉冲星星历表参数, 但受限于脉冲星信号特征及探测器技术水平, 当前高精度导航用脉冲星星历表难以通过空间X射线观测手段获得, 可通过地面射电观测技术较好地建立与维持, 提出了推进我国大口径射电望远镜建设的建议.  相似文献   

15.
 宇宙线的起源作为科学难题已经长达一个世纪。近年随着GeV、TeV伽马射线天文望远镜的发展,探测到了一批高能和甚高能伽马射线超新星遗迹(Supernovae Remnant,SNR),表明超新星遗迹的电磁辐射,不仅从低频射电波段跨越到X射线波段,而且延伸至伽马射线波段,是宇宙中重要的伽马射线源。频率跨度如此之大的电磁辐射,科学家们用以研究各种天文物理过程,如恒星晚期演化与核合成,激波动力学,相对论性粒子高能辐射,高能粒子加速、传播等等。特别是,超新星遗迹被普遍推测为银河系内主要的宇宙线加速源。为了确证对超新星遗迹或其他高能天体这样的推测,深入探索宇宙线的有关机理,必须建造下一代更灵敏的伽马射线望远镜,在更高的能段投入观测。超新星遗迹也因此成为LHAASO项目的重要探测目标。  相似文献   

16.
与大多以光学波段为主的耀斑研究不同的是,作者拟以射电微波(厘米波段)的频谱和成像观测为主及相应的辐射机制研究太阳活动的基本单元——耀斑环及其物理参数的空间分布和时间演化规律。特别是中国研制的具有国际最高的时间、空间和频率分辨率的射电日像仪(MUSER)已投入运行,文章将为推动该设备即将开展的科学研究提供重要的参考工具。此外,文中也加入了与射电微波辐射密切相关的X射线、紫外和光学波段的研究,符合太阳物理乃至整个天体物理多波段研究的大趋势。文章集中介绍作者最具特色的研究,由于篇幅所限只能给出基本物理思想和概念、主要结论和代表性插图,对相应的理论推导、观测数据处理等细节,读者可根据需要参阅对应的参考文献。  相似文献   

17.
针对射电天文测站急需解决通信频率对制冷接收机严重干扰的问题,本论文研制了一款S波段的高温超导滤波器,并将其应用在射电望远镜中,对通讯干扰频率的抑制作用进行了验证,表明在对原接收机性能指标不影响的情况下,对测站干扰点最强的2.143 GHz以下频段抑制度达到了114 dB,取得了很好的应用效果。  相似文献   

18.
10月13日普林斯顿大学的Joseph H.Taylor和他的学生Russell A. Hulse由于他们在1974年首先发现双脉冲星(binary pulsar,其中一个发射射电脉冲,为脉冲星;另一个伴星不发射射电脉冲,为中子星)而获1993年诺贝尔物理学奖。脉冲星实际上是具有射电辐射的中子星,体积一般都很小,其直径不超过20km,但其密度却非常大,可达水的密度的10~(13)以上,主要构成成分为中子。它快速地绕自身轴作自旋运动,但自旋轴与其磁轴并不平行,所以在其自旋过程中,从其两个磁极发射电磁辐射。  相似文献   

19.
《物理》2020,(9)
正作为每秒旋转多达数百次的中子星,脉冲星的射电辐射束看似不可思议的明亮。物理学上要求这么强的辐射通过相干机制产生,即:大量粒子同步发射,正如原子步调一致地辐射而产生激光那样。自脉冲星发现以来,虽然进行了大量研究,但相干机制至今难以捉摸。纽约Flatiron研究所Philippov及其同事提出一个有希望的新方案,以解释这种相干辐射。他们的计算(目前在二维简化情况进行)表明:在星体附近,正反电子对产生时的涨落过程可激发所需的相干辐射。  相似文献   

20.
人类对宇宙最早的认识和观测始于可见光,之后由于有1865年麦克斯韦对电磁波的预言,1887年赫兹的证实,以及1933年杨斯基发现银河系的射电辐射,可见光观测自此扩展到电磁波多波段观测,出现了多波段天文学。1912年,赫斯发现宇宙线,使得天文观测在电磁波观测之外多了一种手段,拉开了多信使天文学的序幕。1987年,戴维斯和小柴昌俊发现了来自超新星爆发的中微子信号,这也是人类首次探测到了来自宇宙的中微子,至此又多了一种认识和观测宇宙的信使。此后,2016年美国激光干涉引力波观测站LIGO探测到引力波,在补齐对于验证爱因斯坦广义相对论的最后一块拼图的同时,也使得引力波成为多信使天文学中最新引入的一种信使。本文介绍了电磁波、宇宙线、中微子、引力波这四种信使的基本概念、发现历史以及探测宇宙的基本原理,对其代表性的实验进行了收集整理,并就其中的一个典型实验进行了简要介绍。期望能够就多波段多信使天文学的发展历程给出一个比较完整的描摹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号