首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
By the reaction of new donor molecules, bis(ethylenedithio)tetrathiafulvalenoquinone(-thioquinone)-1,3-dithiolemethides [BEDT-TTFVO (1) and BEDT-TTFVS (2)] with FeX3 (X = Cl, Br) in CS2/CH3CN, 1:1 salts of 1 or 2 with an FeX4- ion (1.FeX4 and 2.FeX4) were obtained as black needle crystals. Their crystal structures are very similar to each other, in which the donor molecules are strongly dimerized and the dimers construct a one-dimensional uniform chain along the a axis, while the FeX4- ions are located at an open space surrounded by the neighboring donor molecules and also construct a one-dimensional uniform chain along the a axis. There are close contacts between the donor molecules and the FeX4- ions and significant differences in the contact distances among the four salts. All of the salts are semiconductors with room-temperature electrical conductivities of 10-4-10-2 S cm-1. The Fe(III) d spins of the FeX4- ions are subject to dominant ferromagnetic interaction through the participation of one of the singlet pi spins to form a short-range ferromagnetic d-spin chain. Such neighboring chains interact antiferromagnetically with each other through the singlet pi spins and are ordered at 1.0, 2.4, and 0.8 K for 1.FeCl4, 1.FeBr4, and 2.FeCl4, respectively. On the other hand, the antiferromagnetic ordering occurred with some canted angle at 1.9 K to leave a small magnetization for 2.FeBr4.  相似文献   

2.
We report the crystal structure and physical properties of the 2:1 FeCl4- salt of a new donor molecule, EDO-TTFVO. Crystal structure analysis of this salt revealed that the donor molecules formed a beta' '-type two-dimensional conducting layer, and there is a short S...Cl contact between the donor molecules and the FeCl4- ions, which is expected to mediate a strong pi-d interaction. This salt showed a stable metallic conducting behavior down to 0.3 K and an antiferromagnetic ordering at TN approximately 3.0 K, indicating that this salt becomes a new antiferromagnetic molecular metal at ambient pressure. The appearance of the magnetic ordering is considered to originate from the strong pi-d interactions between the donor molecules and the FeCl4- ions because the field dependence of magnetoresistances was remarkably affected below the antiferromagnetic transition temperature.  相似文献   

3.
New charge-transfer salts based on an unsymmetrical donor DMET [dimethyl(ethylenedithio)diselenadithiafulvalene] and metal halide anions (DMET)4MIICl4(TCE)2 (M = Mn, Co, Cu, Zn; TCE = 1,1,2-trichloroethane) have been synthesized and characterized by transport and magnetic measurements. The crystal structures of the DMET salts are isostructural, consisting of a quasi-one-dimensional stack of DMET and insulating layers containing metal halide anions and TCE. Semimetallic band structures are calculated by the tight-binding approximation. Metal-insulator transitions are observed at TMI = 25, 15, 5-20, and 13 K for M = Mn, Co, Cu, and Zn, respectively. The M = Cu salt exhibits anisotropic conduction at ambient pressure, being semiconducting in the intralayer current direction but metallic for the interplane current direction, down to T(MI). The metal-insulator transitions are suppressed under pressure. In the M = Co and Zn salts, large magnetoresistances with hysteresis are observed at low temperatures, on which Shubnikov-de Haas oscillations are superposed above 30 T. In the M = Cu salt, no hysteresis is observed but clear Shubnikov-de Haas oscillations are observed. The magnetoresistance is small and monotonic in the M = Mn salt. Paramagnetic susceptibilities of the spins of the magnetic ions are observed for the M = Mn, Co, and Cu salts with small negative Weiss temperatures of approximately 1 K. In the nonmagnetic M = Zn salt, Pauli-like pi-electron susceptibility that vanishes at TMI is observed. The ground state of the pi-electron system is understood as being a spin density wave state caused by imperfect nesting of the Fermi surfaces. In this pi-electron system, the magnetic ions of the M = Mn, Co, and Cu salts interact differently, exhibiting a variety of transport behaviors.  相似文献   

4.
The 2:1 salts of a new donor molecule, EDT-DSDTFVO with MX4- (M = Fe, Ga; X = Cl, Br) ions, were prepared. The crystal structures of the donor molecules had a beta-type packing motif. All the salts essentially exhibited metallic behaviors despite the small upturns in the resistances below 30-70 K. A large negative magnetoresistance (MR) effect [-14.7% (rho(perpendicular)) at 4.0 K and 5 T] was observed in the FeCl4- salt, while a positive MR effect [+4.0% (rho(perpendicular)) at 4.0 K and 5 T] was observed in the GaCl4- salt, suggesting that there is a pi-d interaction in the FeCl4- salt. The pressure application suppressed the resistivity upturns, increased the negative MR effect (-17.7% at 9.5 kbar) in the FeCl4- salt, and decreased the positive MR effect (+3.3% at 15 kbar) in the GaCl4- salt.  相似文献   

5.
A new pi-d interaction system (EDT-TTFBr2)2FeBr4 (EDT-TTFBr2 = 4,5-dibromo-4',5'-ethylenedithiotetrathiafulvalene) and its nonmagnetic anion analogue (EDT-TTFBr2)2GaBr4 based on a brominated TTF-type organic donor are investigated. The salts featured by quasi-1D pi-electronic systems are metallic with metal-insulator transitions taking place at about 20 and 70 K for the FeBr4- and GaBr4- salts, respectively, where the low-temperature insulating state is associated with charge ordering or a Mott insulator followed by an antiferromagnetic transition at lower temperatures. The FeBr4- salt is featured with an antiferromagnetic transition of the anion d spins at a Neel temperature (TN) = 11 K, which is significantly high despite its long anion-anion Br-Br contact, suggesting the importance of the pi-d interaction in the magnetism. The surprisingly strong pi-d interaction, ca. -22.3 K estimated from the magnetization curve, evidences the usefulness of the chemical modification of the donor molecule with bromine substitution to achieve strong intermolecular interaction. The antiferromagnetic state of the anion d spins affects the transport of the conducting pi electrons through the strong pi-d interaction, as evidenced by the presence of a resistivity anomaly of the FeBr4- salt at TN. Below TN, the FeBr4- salt shows negative magnetoresistance that reaches -23% at the highest magnetic field investigated (B=15 T), whereas only a small positive magnetoresistance is observed in the pi-electron-only GaBr4- salt. The mechanism of the negative magnetoresistance is explained by the stabilization of the insulating state of the pi electrons by the periodic magnetic potential of the anion d spins in the FeBr4- salt, which is modified by applying the external magnetic field.  相似文献   

6.
The mixed cation salts, (dimethylammonium)(3,5-dimethylpyridinium)CuX4 (X = Cl, Br), henceforth (DMA)(35DMP)CuX4, are new examples of spin-ladders based on nonbonded halide...halide interactions between CuX4(2-) anions. In these structures, double rows of the CuX4(2-) anions are sheathed by the 35DMP(+) cations, while the edges are capped by the DMA(+) cations. For the Br salt, the Br...Br contacts that define the rungs of the ladder are 4.017 A in length, while those that define the rails are 3.983 A. For the Cl salt, the corresponding lengths are 3.967 and 4.045 A. The susceptibility data for the Br salt exhibits a maximum at approximately 5.5 K, and fitting the data to the spin 1/2 antiferromagnetic ladder model yields 2J(rail)/k = -7.95 K and 2J(rung)/k = -4.07 K. The exchange coupling is much weaker in the Cl salt, no maximum in chi is observed down to 1.8 K, and the corresponding exchange constants are -1.59 and -1.25 K, respectively. An analysis is made of the structural factors involved in the J(rung) pathway.  相似文献   

7.
Magnetization and heat capacity were measured down to 0.4 K in a 2:1 charge-transfer (CT) salt of a new donor molecule, ethylenedithiotetrathiafulvalenoquinone-1,3-dithiolemethide (1) with a magnetic FeBr(4)(-) ion (1(2).FeBr(4)). The Fe(III) d spins of FeBr(4)(-) ions were subject to apparently ferromagnetic interaction with each other through the interaction with the pi spins developed by localization of the conducting pi electrons on the donor columns, eventually giving rise to ferrimagnetic ordering (FI) near 1 K, which provides the first example in a molecular pi-d system.  相似文献   

8.
The 2:1 salt of a new donor molecule, EDT-DSDTFVSDS with FeBr4- ion, (EDT-DSDTFVSDS)2.FeBr4 showed an essentially metallic behavior despite a small upturn in the electrical resistance below ca. 30 K (electrical conductivities at 290 and 4.2 K are 200 and 170 S cm-1, respectively). The Fe(III) d spins of the FeBr4- ions in this salt were subject to antiferromagnetic ordering at 3.3 K by virtue of a strong pi-d interaction (Jpid) which is comparable to that in a molecular metallic conductor, lambda-(BETS)2.FeCl4, and of a very weak d-d interaction (Jdd). This strong pi-d interaction was evidenced by a large and negative magnetoresistance effect (ca. 20% at 5 T) as well as by the appearance of a large dip in the resistance at the magnetic field (ca. 2.0 T) parallel to the easy axis for the spin-flop transition of the Fe(III) d spins.  相似文献   

9.
The structures and properties of six new iron(iii) diamine-bis(phenolate) complexes are reported. Reaction of anhydrous FeX(3) salts (where X = Cl or Br) with the diprotonated tripodal tetradentate ligands 2-pyridylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)[L(1)], and N,N-dimethyl-N',N'-bis(2-methylene-4-methyl-6-tert-butylphenol)ethylenediamine, H(2)[L(2)], produces the trigonal bipyramidal iron(iii) complexes, [L(1)]FeCl , [L(1)]FeBr , [L(2)]FeCl and [L(2)]FeBr . Reaction of FeX(3) with the related linear tetradentate ligand N,N'-bis(4,6-tert-butyl-2-methylphenol)-N,N'-bismethyl-1,2-diaminoethane, H(2)[L(3)], generates square pyramidal iron(iii) complexes, [L(3)]FeCl and [L(3)]FeBr . Complexes have been characterized using electronic absorption spectroscopy and magnetometry. Single crystal X-ray molecular structures have been determined for complexes 1, 3, 5 and 6.  相似文献   

10.
Several conducting salts based on BETS [where BETS = bis(ethylenedithio)tetraselenafulvalene] molecules and divalent magnetic anions such as the (CoCl(4))(2-), (CoBr(4))(2-), and (MnBr(4))(2-) were prepared. Electrocrystallization by using the (CoCl(4))(2-) anion gave two kinds of crystals. Block-shaped crystals were cleared to be (BETS)(2)CoCl(4), which is an insulator with the high-spin state of cobalt 3d spin. On the other hand, the X-ray crystal structure analysis of a plate-shaped crystal of the (CoCl(4))(2-) salt revealed the system to be kappa-(BETS)(4)CoCl(4)(EtOH), which is metallic down to 0.7 K. The electronic band structure calculation gave a typical two-dimensional cylindrical Fermi surface. However, there is only very weak antiferromagnetic interaction between the S = 3/2 cobalt 3d spins because of its anion-solvent-intermingled layer structure. On the other hand, the electrocrystallization by using the (MnBr(4))(2-) anion yielded the plate-shaped black crystals of the (MnBr(4))(2-) salt. Crystal structure analysis of the (MnBr(4))(2-) salt showed that the salt is theta;-(BETS)(4)MnBr(4)(EtOH)(2) with alternating donor and anion-solvent mixed layers. The stacking direction in one donor layer is perpendicular to those of the neighboring layers. The electrical and magnetic properties of the theta;-(BETS)(4)MnBr(4)(EtOH)(2) salt showed the metallic behavior down to approximately 30 K and the paramagnetism of the high-spin manganese 3d spins. Band structure calculation of this salt gave an elliptical cylindrical Fermi surface. Because the Fermi surfaces of the adjacent donor layers are rotated to each other by 90 degrees, the theta-(BETS)(4)MnBr(4)(EtOH)(2) salt becomes a two-dimensionally isotropic metal.  相似文献   

11.
Eight new iron(III) amine-bis(phenolate) complexes are reported. The reaction of anhydrous FeX(3) salts (where X = Cl or Br) with the diprotonated tripodal tetradentate ligands 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L1, 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L2, and 2-methoxyethylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L3, 2-methoxyethylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L4 produces the trigonal bipyramidal iron(III) complexes, L1FeCl (1a), L1FeBr (1b), L2FeCl (2a), L2FeBr (2b), L3FeCl (3a), L3FeBr (3b), L4FeCl (4a), and L4FeBr (4b). All complexes have been characterized using electronic absorption spectroscopy, cyclic voltammetry and room temperature magnetic measurements. Variable temperature magnetic data were acquired for complexes 2b, 3a and 4b. Variable temperature M?ssbauer spectra were obtained for 2b, 3a and 4b. Single crystal X-ray molecular structures have been determined for proligand H(2)L4 and complexes 1b, 2b, and 4b.  相似文献   

12.
The preparation, X-ray structures and magnetic properties of two isostructural new charge transfer salts: (BO)[M(isoq)2(NCS)4]; M=CrIII(1), FeIII(2) and isoq=isoquinoline are reported. Their structure consists of alternate organic and inorganic layers, each layer being formed by mixed columns of BO radical cations and paramagnetic metal complex anions. There are short intermolecular contacts between donor and anion (S2anion· · ·S4BO<3.5 Å) and between adjacent BO molecules (O· · · O1<3.2 Å). The two compounds are insulators. ESR measurements show single signal without separating the donor and anion spins. The magnetic measurements obey the Curie-Weiss law and revealed dominant antiferromagnetic interactions between anion spin and donor spin, but long-range magnetic ordering did not occur down to 2 K. This is directly related to structural reasons which were deduced from a comparison of the title compounds with other 1:1 salts containing same anion complexes and different donors.  相似文献   

13.
Taraba J  Zak Z 《Inorganic chemistry》2006,45(9):3695-3700
Several salts of bis(chlorosulfonyl)imide HN(SO2Cl)2 (1), namely, two solvates of its potassium salt, KN(SO2Cl)2.(1/2)CH3CN (1K1), KN(SO2Cl)2.(1/6)CH2Cl2 (1K2), and its tetrachlorophosphonium salt, [PCl4][N(SO2Cl)2] (2), were prepared and structurally characterized. The reaction of HN(SO2Cl)2 with Me3N gives the [N(SO2Cl)2]- salt of a novel cation, [N(SO2NMe3)2]+. This cation is analogous to the [HC(SO2NMe3)2]+ cation, but in contrast to the latter, it is fairly stable to hydrolysis. The salt [N(SO2NMe3)2]+[N(SO2Cl)2]- (3) can be converted into salts of other anions by being treated with diluted aqueous solutions of the respective acids, and thus NO3-, Cl-.H2O, SeO3(2-), CH3COO-, HSO4-, (COO)2(2-) salts were prepared. Treatment of 3 with concentrated HNO3 gave the [N(SO2NMe3)2]+ [O2NO-H-ONO2]- salt, and the addition of an HCl-acidified FeCl3 aqueous solution yielded the FeCl4- salt. Methanolysis resulted in the formation of MeOSO3- and [MeOSO2NSO2OMe]- salts. All salts have been characterized by chemical analysis, vibrational spectroscopy, and X-ray structure determinations.  相似文献   

14.
The preparation, X-ray crystal structures, and magnetic properties of two new isostructural charge transfer salts, (BDH-TTP)M(isoq)(2)(NCS)(4) (M = Cr(III) (1), Fe(III) (2), BDH-TTP = 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, isoq = isoquinoline), are reported. Crystal data for 1: monoclinic, space group C2/c (#15), a = 16.1363(9) A, b = 19.0874(12) A, c = 12.5075(6) A, beta = 95.70(4) degrees, V = 3833.2(4) A(3), Z = 4, R = 0.0516 for 2844 reflections with I > 2 sigma(I); for 2: monoclinic, C2/c (#15), a = 16.1938(8) A, b = 19.1117(11) A, c = 12.5100(10) A, beta = 94.265(3) degrees, V = 3861.0(4) A(3), Z = 4, R = 0.0479 for 2969 reflections with I > 2 sigma(I). The crystal structure consists of zigzag mixed organic and inorganic layers, and each layer is formed by mixed columns of BDH-TTP radical cations and paramagnetic metal complex anions. Short intermolecular atomic contacts between donor and anion are observed within the column in the c-direction. The two compounds have weak room-temperature electrical conductivities. ESR measurements show a single signal without separating the donor and anion spins, suggesting a pi interaction between the d and pi electrons. For both compounds ferrimagnetic interactions are observed between the nonequivalent donor and anion spins. These materials exhibit bulk canted weak ferromagnetism below 7.6 K for both 1 and 2.  相似文献   

15.
Five kinds of (1:1), (1:3), and (2:1) salts of 3-[4-(diethylmethylammonio)phenyl]-1,5-diphenyl-6-oxoverdazyl radical cation [V](+) with M(dmit)(2) anions (M = Ni, Zn, Pd, and Pt, dmit = 1,3-dithiol-2-thione-4,5-dithiolate) ([V](+)[Ni(dmit)(2)](-) (1), [V](+)[Ni(dmit)(2)](3)(-) (2), [V](+)(2)[Zn(dmit)(2)](2-) (3), [V](+)(2)[Pd(dmit)(2)](2-) (4), and [V](+)(2)[Pt(dmit)(2)](2-) (5)) and an iodide salt of [V](+) ([V](+)[I](-) (6)) have been prepared, and the magnetic susceptibilities (chi(M) values) have been measured between 1.8 and 300 K. The chi(M) of the (1:1) Ni salt (1) can be well reproduced by the sum of the contributions from (i) a Curie-Weiss system with a Curie constant (C) of 0.376 K emu/mol and a negative Weiss constant (theta) of -1.5 K and (ii) the one-dimensional Heisenberg antiferromagnetic alternating chain system with 2J(A-B)/k(B) = -274 K (alternation parameter alpha = J(A-C)/J(A-B) = 0.2). The chi(M) of the (1:3) Ni salt (2) can be well explained by the two-term contributions from (i) the Curie-Weiss system with C = 0.376 K emu/mol and theta = -5.0 K and (ii) the dimer system with 2J/k(B) = -258 K. The magnetic properties of 1 and 2 were discussed based on the results obtained by crystal structure analysis and ESR measurements of 1 and 2. The chi(M) values of the (2:1) Zn, Pd, Pt salts 3, 4, and 5 and [V](+)[I](-) salt 6 follow the Curie-Weiss law with C = 0.723, 0.713, 0.712, and 0.342 K emu/mol and theta = -2.8, -3.1, -2.6, and +0.02 K, respectively, indicating that only the spins of the verdazyl radical cation contribute to the magnetic property of these salts. The salts 1, 3, and 5 are insulators. On the other hand, the conductivity (sigma) of the Ni salt 2 and Pd salt 4 at 20 degrees C was sigma = 8.9 x 10(-2) and 1.3 x 10(-4) S cm(-)(1) with an activation energy E(A) = 0.11 and 0.40 eV, respectively. The salts 2 and 4 are new molecular magnetic semiconductors.  相似文献   

16.
Sandwich-type supramolecular cation structures of (M(+))([12]crown-4)(2) complexes (M(+) = Li(+), Na(+), K(+), and Rb(+)) were introduced as countercations to the [Ni(dmit)(2)](-) anion, which bears an S = (1)/(2) spin, to form novel magnetic crystals (dmit(2-) = 2-thione-1,3-dithiole-4,5-dithiolate). The zigzag arrangement of Li(+)([12]crown-4)(2) cations in Li(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salt induced weak intermolecular interactions of [Ni(dmit)(2)](-) dimers, whose magnetic spins were isolated from each other. The molecular arrangements of cations and anions in M(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salts (M(+) = Na(+), K(+), and Rb(+)) were isostructural to each other. In the case of Na(+)([12]crown-4)(2)[Ni(dmit)(2)](-), the space group C2/m changed to C2/c with a lowering in temperature from 298 to 100 K. This structural change occurred at 222.5 K as a first-order phase transition. The space group C2/m (T = 298 K) in the salt K(+)([12]crown-4)(2)[Ni(dmit)(2)](-) also changed to C2/c (T = 100 K), which transition occurred at 270 K. Crystal structural analyses at 298 and 100 K revealed changes in both supramolecular cation conformation and [Ni(dmit)(2)](-) anion arrangements. The transition from C2/m to C2/c crystals generated a dipole moment in the Na(+)([12]crown-4)(2) and K(+)([12]crown-4)(2) structures, which were reconstructed to cancel the net dipole moment of the C2/c crystals. These cation transformations led to changes in intermolecular interactions between the [Ni(dmit)(2)](-) anions via structural rearrangements. The crystal structure of C2/c was stabilized in Rb(+)([12]crown-4)(2)[Ni(dmit)(2)](-) at 298 K. The [Ni(dmit)(2)](-) configuration in these salts with the C2/c space group was a one-dimensional uniform chain, which showed the temperature-dependent magnetic susceptibility of a one-dimensional linear Heisenberg antiferromagnetic chain.  相似文献   

17.
The synthesis and detailed characterization of the new spin crossover mononuclear complex [Fe(II)(DAPP)(abpt)](ClO(4))(2), where DAPP = [bis(3-aminopropyl)(2-pyridylmethyl)amine] and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, are reported. Variable-temperature magnetic susceptibility measurements and M?ssbauer spectroscopy have revealed the occurrence of an abrupt spin transition with a hysteresis loop. The hysteresis width derived from magnetic susceptibility measurements is 10 K, the transition being centered at T(c) downward arrow = 171 K for decreasing and T(c) upward arrow = 181 K for increasing temperatures. The crystal structure was resolved in the high-spin (293 and 183 K) and low-spin (123 K) states. Both spin-state structures belong to the monoclinic space group P2(1)/n (Z = 4). The thermal spin transition is accompanied by the shortening of the mean Fe-N distances by 0.177 A. The two main structural characteristics of [Fe(DAPP)(abpt)](ClO(4))(2) are a branched network of intermolecular links in the crystal lattice and the occurrence of two types of order-disorder transitions (in the DAPP ligand and in the perchlorate anions) accompanying the thermal spin change. These features are discussed relative to the magnetic properties of the complex. The electronic structure calculations show that the structural disorder in the DAPP ligand modulates the energy gap between the HS and LS states. In line with previous studies, the order-disorder phenomena and the spin transition in [Fe(DAPP)(abpt)](ClO(4))(2) are found to be interrelated.  相似文献   

18.
Four different cation radical salts are obtained upon electrocrystallization of [Cp(2)W(dmit)] (dmit = 1,3-dithiole-2-thione-4,5-dithiolato) in the presence of the BF(4)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions. In these formally d(1) cations, the WS(2)C(2) metallacycle is folded along the S···S hinge to different extents in the four salts, an illustration of the noninnocent character of the dithiolate ligand. Structural characteristics and the charge distribution on atoms, for neutral and ionized complexes with various folding angles, were calculated using DFT methods, together with the normal vibrational modes and theoretical Raman spectra. Raman spectra of neutral complex [Cp(2)W(dmit)] and its salts formed with BF(4)(-), AsF(6)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions were measured using the red excitation (λ = 632.8 nm). A correlation between the folding angle of the metallacycle and the Raman spectroscopic properties is analyzed. The bands attributed to the C═C and C-S stretching modes shift toward higher and lower frequencies by about 0.3-0.4 cm(-1) deg(-1), respectively. The solid state structural and magnetic properties of the three salts are analyzed and compared with those of the corresponding molybdenum complexes. Temperature dependence of the magnetic susceptibility shows the presence of one-dimensional antiferromagnetic interactions in the BF(4)(-), PF(6)(-), and [Au(CN)(2)](-) salts, while an antiferromagnetic ground state is identified in the Br(-) salt below T(Ne?el) = 7 K. Interactions are systematically weaker in the tungsten salts than in the isostructural molybdenum analogs, a consequence of the decreased spin density on the dithiolene ligand in the tungsten complexes.  相似文献   

19.
The synthesis, electrochemical properties, and molecular structure of a new pi-electron donor, 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP), is described. In contrast to the hitherto-known tetrachalcogenafulvalene pi-donors providing organic superconductors, this donor contains only the bis-fused 1,3-dithiole-2-ylidene unit as a pi-electron system, yet produces a series of ambient-pressure superconductors beta-(BDA-TTP)2X [X = SbF6 (magnetic T(c) = 6.9 K, resistive T(c) = 7.5 K), AsF6 (magnetic T(c) = 5.9 K, resistive T(c) = 5.8 K), and PF6 (magnetic T(c) = 5.9 K)], which are isostructural. The values of the intermolecular overlap integrals calculated on the donor layers of these superconductors suggest a two-dimensional (2D) electronic structure with loose donor packing. Tight-binding band calculations also indicate that these superconductors have the 2D band dispersion relations and closed Fermi surfaces.  相似文献   

20.
Four kinds of 1:1 and 1:3 salts of 3-[4-(trimethylammonio)phenyl]-1,5-diphenyl-6-oxoverdazyl radical cation ([1](+)) and its mono- and dimethyl derivatives ([2](+) and [3](+)) with Ni(dmit)(2) anions (dmit = 1,3-dithiol-2-thione-4,5-dithiolate) ([1](+)[Ni(dmit)(2)](-) (4), [2](+)[Ni(dmit)(2)](-) (5), [3](+)[Ni(dmit)(2)](-) (6), and [1](+)[Ni(dmit)(2)](3)(-) (7)) have been prepared, and the magnetic susceptibilities (chi(M)) have been measured between 1.8 and 300 K. The chi(M) values of salts 5 and 7 can be well reproduced by the sum of the contributions from (i). a Curie-Weiss system with a Curie constant of 0.376 (K emu)/mol and negative Weiss constants (THETAV;) of -0.4 and -1.7 K and (ii). a dimer system with strong negative exchange interactions of 2J/k(B) = -354 and -258 K, respectively. The dimer formations in Ni(dmit)(2) anions have been ascertained by the crystal structure analyses of salts 4-6. In salts 4 and 6, Ni(dmit)(2) dimer molecules are sandwiched between two verdazyl cations, indicating the formation of a linear tetramer in 4 and 6. The magnetic susceptibility data for salts 4 and 6 have been fitted to a linear tetramer model using an end exchange interaction of 2J(1)/k(B) = -600 K and a central interaction of 2J(2)/k(B) = -280 K for 4 and 2J(1)/k(B) = -30 K and 2J(2)/k(B) = -580 K for 6, respectively. The results of the temperature dependence of the g(T) value in salts 4-6 obtained by ESR measurement also support the above analyses. The 1:1 salts 4-6 are insulators. On the other hand, the conductivity of the 1:3 salt 7 at 20 degrees C was sigma = 0.10 S cm(-)(1) with an activation energy E(A) = 0.099 eV, showing the semiconductor property. Salt 7 is a new molecular paramagnetic semiconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号