首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在利用HNO3处理CoFe2O4磁性纳米粒子使其表面离子化、分散性得到改善的基础上, 采用苯胺在其表面原位聚合, 制备了具有电磁功能的聚苯胺(PANI)/CoFe2O4纳米复合物. 借助TEM、XRD、FT-IR、四探针电导率仪和VSM(振动样品磁强计)等分析手段研究了复合物的形貌、结构及其电磁性能. 结果表明, CoFe2O4以25 nm左右的粒子分散于聚苯胺基体中, 被其完全包覆, CoFe2O4与PANI之间存在化学键合作用; 复合物同时具有电性能和磁性能, 其导电率随CoFe2O4含量增加而降低, 饱和磁化强度随之升高, 而矫顽力在所研究的范围内则先增大而后又减小, 且均高于CoFe2O4的矫顽力.  相似文献   

2.
The conjugation of 14 nm diameter CoFe2O4 nanoparticles to the surface of biotinylated microtubules enables their manipulation with externally applied magnetic fields of small, permanent NdFeB magnets. Microtubules are selectively patterned on kinesin motor-modified glass surfaces in coparallel arrays that mimic the orientation of the magnetic field lines over millimeter distances. The magnetic field is simultaneously used to increase surface loading of microtubules. We demonstrate that motility across the kinesin motor surface is retained following magnetic functionalization of the microtubules, while gliding speed is dependent on loading level of the neutravidin linker as well as magnetic nanoparticles.  相似文献   

3.
Magnetic core shell nanoparticles (MCSNPs) 30 nm diameter with a magnetic weight of 10% are usually much too small to be trapped in microfluidic systems using classical external magnets. Here, a simple microchip for efficient MCSNPs trapping and release is presented. It comprises a bed of micrometric iron beads (6-8 μm diameter) packed in a microchannel against a physical restriction and presenting a low dead volume of 0.8 nL. These beads of high magnetic permeability are used to focus magnetic field lines from an external permanent magnet and generate local high magnetic gradients. The nanoparticles magnetic trap has been characterised both by numerical simulations and fluorescent MCSNPs imaging. Numerical simulations have been performed to map both the magnetic flux density and the magnetic force, and showed that MCSNPs are preferentially trapped at the iron bead magnetic poles where the magnetic force is increased by 3 orders of magnitude. The trapping efficiency was experimentally determined using fluorescent MCSNPs for different flow rates, different iron beads and permanent magnet positions. At a flow rate of 100 μL h(-1), the nanoparticles trapping/release can be achieved within 20 s with a preconcentration factor of 4000.  相似文献   

4.
A microfluidic device integrated with molecularly imprinted magnetic nanoparticles as stationary phase was designed for rapid enantioseparation by capillary electrochromatography. The nanoparticles were synthesized by the co-polymerization of methacrylic acid and ethylene glycol dimethacrylate on 3-(methacryloyloxy)propyltrimethoxysilane-functionalized magnetic nanoparticles (25-nm diameter) in the presence of template molecule, and characterized with infrared spectroscopy, thermal gravimetric analysis, and transmission electron microscope. The imprinted nanoparticles (200-nm diameter) could be localized as stationary phase in the microchannel of microfluidic device with the tunable packing length by the help of an external magnetic field. Using S-ofloxacin as the template molecule, the preparation of imprinted nanoparticles, the composition and pH of mobile phase, and the separation voltage were optimized to obtain baseline separation of ofloxacin enantiomers within 195 s. The analytical performance could be conveniently improved by varying the packing length of nanoparticles zone, showing an advantage over the conventional packed capillary electrochromatography. The linear ranges for amperometric detection of the enantiomers using carbon fiber microdisk electrode at +1.0 V (vs. Ag/AgCl) were from 1.0 to 500 μM and 5.0 to 500 μM with the detection limits of 0.4 and 2.0 μM, respectively. The magnetically tunable microfluidic device could be expanded to localize more than one kind of template-imprinted magnetic nanoparticles for realizing simultaneous analysis of different kinds of chiral compounds.  相似文献   

5.
The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film thickness increasing from about 20 to 120 nm while shifting from 3 to 10 CoFe(2)O(4)/PSS bilayers, using the 8.9 × 10(-6) (moles of cobalt ferrite per litre) suspension.  相似文献   

6.
Nanocomposite materials consisting of CoFe2O4 magnetic nanoparticles and a polyethylene glycol-acrylamide gel matrix have been synthesized. The structure of such materials was studied by means of small-angle scattering of X-rays and polarized neutrons, showing that the CoFe2O4 nanoparticles were successfully and homogeneously embedded in the gel structure. Magnetic, viscoelastic, and water retention properties of the nanocomposite gel confirm that the properties of both nanoparticles and gel are combined in the resulting nanomagnetic gel. Scanning electron microscopy highlights the nanocomposite nature of the material, showing the presence of a gel structure with different pore size distributions (pores with micron and nano-size distributions) that can be used as active sponge-like nanomagnetic container for water-based formulations as oil-in-water microemulsions.  相似文献   

7.
Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles   总被引:16,自引:0,他引:16  
High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)(3), with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe(3)O(4)) nanoparticles. Similarly, reaction of Fe(acac)(3) and Co(acac)(2) or Mn(acac)(2) with the same diol results in monodisperse CoFe(2)O(4) or MnFe(2)O(4) nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe(3)O(4) can be oxidized to Fe(2)O(3), as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.  相似文献   

8.
Qin S  Zhou C  Zhu Y  Ren Z  Zhang L  Fu H  Zhang W 《色谱》2011,29(9):942-946
将表面分别被改性成C18和氨基的磁性纳米颗粒按照不同比例混合,制备成具有不同分离选择性的混合固定相,进一步采用动态磁涂覆的方法制备开管毛细管电色谱柱。通过考察这种色谱柱中不同种类固定相表面物理化学性质对电渗流的综合影响,从理论上说明了其电渗流的特征。分别在不同固定相配比及不同涂覆长度条件下进行实验,理论与实验结果相符,证实通过调节固定相配比或磁铁对数可以便捷地调节电渗流的大小。  相似文献   

9.
Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. In this review, we summarize the separation techniques that have been initially used for this purpose. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. Further development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes.  相似文献   

10.
导电聚苯胺与磁性CoFe2O4纳米复合物的制备与表征   总被引:2,自引:0,他引:2  
在利用HNO3酸化处理CoFe2O4磁性纳米粒子使其表面离子化、分散性得到改善的基础上, 采用原位聚合法制备了具有电磁功能的聚苯胺/CoFe2O4 (PANI/CoFe2O4)纳米复合物. 借助TEM, XRD, FT-IR, TG, 四探针电导率仪、VSM(振动样品磁强计)等分析手段研究了复合物的形貌、结构、热稳定性及电磁性能. 结果表明, 处理过的CoFe2O4磁性纳米粒子可形成分散均匀的PANI/CoFe2O4纳米复合物, CoFe2O4以25 nm左右的粒子分散于聚苯胺基体中; PANI与CoFe2O4之间存在化学键合作用, 正是这种作用使复合物热稳定性得以提高; 复合物同时具有导电性和磁性能, 且随CoFe2O4含量变化而变化.  相似文献   

11.
Magnetite nanoparticles of Fe(3)O(4) have been found to grow into large highly branched nanostructures including nanochains and highly branched nanotrees in the solid state through a postannealing process. By varying the preparation conditions such as annealing time and temperature, the nanostructures could be easily manipulated. Changing the starting concentration of the magnetic nanoparticle solution also caused significant changes of the nanoarchitectures. When the magnetic nanoparticle concentration is low, the nanoparticles formed straight rods mainly with an average diameter of 80 nm and a length of several microns. With increasing concentration of the nanoparticles, treelike structures began to form. With further increase of the concentration, well-ordered nanostructures with the appearance of snowflakes were generated. The driving force for the formation of the highly ordered nanostructures includes interaction between the nanoparticles and interaction through surface-capping molecules. This experiment demonstrates that novel nanostructures can be generated by self-assembly of magnetic nanoparticles under the solid state.  相似文献   

12.
The magnetic properties of cobalt ferrite nanoparticles dispersed in a silica matrix in samples with different concentrations (5 and 10 wt% CoFe2O 4) and same particle size (3 nm) were studied by magnetization, DC and AC susceptibility, and Mossbauer spectroscopy measurements. The results indicate that the particles are very weakly interacting. The magnetic properties (saturation magnetization, anisotropy constant, and spin-canting) are discussed in relation to the cation distribution.  相似文献   

13.
We report the physico-chemical characterisation of fatty acid stabilised aqueous magnetic fluids, which are ideal systems for studying the influence of nanoparticle aggregation on the emergent magnetic resonance properties of the suspensions. Stable colloids of superparamagnetic magnetite, Fe(3)O(4), nanoparticle clusters in the 80 to 100 nm size range were produced by in situ nanoparticle growth and stabilisation, and by suspending pre-formed nanoparticles. NMR relaxation analysis shows that the magnetic resonance properties of the two types of suspension differ substantially and provides new insights into how the relaxation mechanisms are determined by the organisation of the nanoparticles within the clusters.  相似文献   

14.
CoFe(2)O(4)-TiO(2) and CoFe(2)O(4)-ZnO nanoparticles/film composites were prepared from directed assembly of colloidal CoFe(2)O(4) in a Langmuir-Blodgett monolayer and atomic layer deposition (ALD) of an oxide (TiO(2) or ZnO). The combination of these two methods permits the use of well-defined nanoparticles from colloidal chemistry, their assembly on a large scale, and the control over the interface between a ferrimagnetic material (CoFe(2)O(4)) and a semiconductor (TiO(2) or ZnO). Using this approach, architectures can be assembled with a precise control from the Angstrom scale (ALD) to the micrometer scale (Langmuir-Blodgett film). The resulting heterostructures present well-calibrated thicknesses. Electron microscopy and magnetic measurement studies give evidence that the size of the nanoparticles and their intrinsic magnetic properties are not altered by the various steps involved in the synthesis process. Therefore, the approach is suitable to obtain a layered composite with a quasi-monodisperse layer of ferrimagnetic nanoparticles embedded in an ultrathin film of semiconducting material.  相似文献   

15.
An easy and convenient method for the synthesis of cobalt and magnesium ferrite nanoparticles is demonstrated using liquid foams as templates. The foam is formed from an aqueous mixture of an anionic surfactant and the desired metal ions, where the metal ions are electrostatically entrapped by the surfactant at the thin borders between the foam bubbles and their junctions. The hydrolysis is carried out using alkali resulting in the formation of desired nanoparticles, with the foam playing the role of a template. However, in the formation of ferrites with the formula MFe(2)O(4), where the metal ion and iron possess oxidation states of +2 and +3, respectively, forming a foam from a 1:2 mixture of the desired ionic solutions would lead to a foam composition at variance with the original solution mixture because of greater electrostatic binding of ions possessing a greater charge with the surfactant. In our procedure, we circumvent this problem by preparing the foam from a 1:2 mixture of M(2+) and Fe(2+) ions and then utilizing the in situ conversion of Fe(2+) to Fe(3+) under basic conditions inside the foam matrix to get the desired composition of the metal ions with the required oxidation states. The fact that we could prepare both CoFe(2)O(4) and MgFe(2)O(4) particles shows the vast scope of this method for making even multicomponent oxides. The magnetic nanoparticles thus obtained exhibit a good crystalline nature and are characterized by superparamagnetic properties. The magnetic features observed for CoFe(2)O(4) and MgFe(2)O(4) nanoparticles are well in accordance with the expected behaviors, with CoFe(2)O(4) particles showing higher blocking temperatures and larger coercivities. These features can easily be explained by the contribution of Co(2+) sites to the magnetocrystalline anisotropy and the absence of the same from the Mg(2+) ions.  相似文献   

16.
We investigate the structure and dynamics of charge-stabilized CoFe(2)O(4)-SiO(2) core-shell magnetic nanoparticles in suspensions. Small angle x-ray scattering and x-ray photon correlation spectroscopy allow us to analyze the intraparticle (core-shell) and interparticle structure of the suspension, as well as their dynamic and hydrodynamic behavior. Due to the weak magnetic interactions, the liquidlike structure is governed by screened Coulomb interactions. The hydrodynamic interactions of the measured systems are significantly stronger than predicted by current theories.  相似文献   

17.
Purification and size-based separation of nanoparticles remain significant challenges in the preparation of well-defined materials for fundamental studies and applications. Diafiltration shows considerable potential for the efficient and convenient purification and size separation of water-soluble nanoparticles, allowing for the removal of small-molecule impurities and for the isolation of small nanoparticles from larger nanostructures in a single process. Herein, we report studies aimed at assessing the suitability of diafiltration for (i) the purification of water-soluble thiol-stabilized 3-nm gold nanoparticles, (ii) the separation of a bimodal distribution of nanoparticles into the corresponding fractions, and (iii) the separation of a polydisperse sample into fractions of differing mean core diameter. NMR, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) measurements demonstrate that diafiltration produces nanoparticles with a much higher degree of purity than is possible by dialysis or a combination of solvent washes, chromatography, and ultracentrifugation. UV-visible spectroscopic and transmission electron microscopic (TEM) analyses show that diafiltration offers the ability to separate nanoparticles of disparate core size. These results demonstrate the applicability of diafiltration for the rapid and green preparation of high-purity gold nanoparticle samples and the size separation of heterogeneous nanoparticle samples. They also suggest the development of novel diafiltration membranes specifically suited to high-resolution nanoparticle size separation.  相似文献   

18.
Heterostructured magnetic nanotubes   总被引:1,自引:0,他引:1  
Heterostructured magnetic tubes with submicrometer dimensions were assembled by the layer-by-layer deposition of polyelectrolytes and nanoparticles in the pores of track-etched polycarbonate membranes. Multilayers composed of poly(allylamine hydrochloride) and poly(styrene sulfonate) assembled at high pH (pH > 9.0) were first assembled into the pores of track-etched polycarbonate membranes, and then multilayers of magnetite (Fe3O4) nanoparticles and PAH were deposited. Transmission electron microscopy (TEM) confirmed the formation of multilayer nanotubes with an inner shell of magnetite nanoparticles. These tubes exhibited superparamagnetic characteristics at room temperature (300 K) as determined by a SQUID magnetometer. The surface of the magnetic nanotubes could be further functionalized by adsorbing poly(ethylene oxide)-b-poly(methacrylic acid) block copolymers. The separation and release behavior of low molecular weight anionic molecules (i.e., ibuprofen, rose bengal, and acid red 8) by/from the multilayer nanotubes were studied because these tubes could potentially be used as separation or targeted delivery vehicles. The magnetic tubes could be successfully used to separate (or remove) a high concentration of dye molecules (i.e., rose bengal) from solution by activating the nanotubes in acidic solution. The release of the anionic molecules in physiologically relevant buffer solution showed that whereas bulky molecules (e.g., rose bengal) release slowly, small molecules (i.e., ibuprofen) release rapidly from the multilayers. The combination of the template method and layer-by-layer deposition of polyelectrolytes and nanoparticles provides a versatile means to create functional nanotubes with heterostructures that can be used for separation as well as targeted delivery.  相似文献   

19.
A novel kind of magnetic core/mesoporous silica shell nanospheres with a uniform particle diameter of ca. 270 nm was synthesized. The inner magnetic core endues the whole nanoparticle with magnetic properties, while the outer mesoporous silica shell shows high enough surface area and pore volume. The synthesized material is expected to be applied to targeted drug delivery and multiphase separation. The storage and release of ibuprofen into and from the pore channels of the mesoporous silica shell, as a typical example, are demonstrated.  相似文献   

20.
An immunoaffinity purification method coupled on-line to capillary electrophoresis (IACE) which allows the determination of several isoforms of intact alpha-1 acid glycoprotein (AGP) in serum samples using UV detection is developed. The immunoaffinity step is based on anti-AGP antibodies (Abs) covalently bound to magnetic beads (MBs) which are captured at the inlet end of the capillary using permanent magnets placed inside the cartridge of the CE instrument. The on-line method includes injection of the MBs with the Ab bound (MBs–Ab) and their trapping by the magnets at the entrance of the separation column, injection of serum sample and capture of AGP by the Abs, release of captured AGP, focus of desorbed protein, separation of AGP isoforms, and removal of MBs–Ab. The optimization of the different factors involved in each step allowed purification, separation and detection of AGP isoforms in a single electrophoretic analysis in about 1 h. Automation, sample and reagents consumption as well as analysis time was improved compared to off-line alternatives which use purification of AGP in an immunochromatographic column and CE separation of AGP isoforms in two independent operations. The analytical methodology developed allows the separation of 10 AGP isoforms in serum samples from a healthy donor. For a serum sample, precision (expressed as relative standard deviation) in terms of corrected area percentage was better than 0.5% for each peak accounting for more than 10% of total AGP and it was better than 4.0% in terms of relative migration time of each AGP isoform considering the whole process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号