首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用分光光度法研究了阿米卡星和茜素红在水溶液中的电荷转移反应,室温条件下二者在水溶液中可形成结合比为1∶1荷移络合物,其最大吸收波长位于520nm处,表观摩尔吸光系数为1.44×103L·mol-1.cm-1。阿米卡星在5×10-5~6×10-4mol/L范围内符合比尔定律,线性回归方程为A=0.23+1439.5c(mol/L),相关系数r=0.9992,相对标准偏差为0.31%(n=6),加标回收率为97.6%~101.6%,据此建立了阿米卡星的测定新方法,可用于药品中阿米卡星的测定。  相似文献   

2.
在2-(N-吗啉)乙磺酸(MES)介质中,庆大霉素与纳米金通过Au-N键结合形成复合物,使纳米金聚集,并在543 nm处存在明显共振散射峰,在525 nm和680 nm处存在明显可见吸收峰,据此建立了共振光散射光谱法和比色法检测庆大霉素的方法。在最优实验条件下,庆大霉素浓度在9.31~74.4 nmol/L范围内,543 nm处共振散射光强度增加值(ΔIRLS)与庆大霉素浓度呈现良好的线性关系,其线性回归方程为ΔI=199.5c-131.5(10-8mol/L),r=0.9994。在4.1×10-9~2.2×10~(-5)mol/L浓度范围内时,A_(680)/A_(525)增加值[Δ(A_(680)/A_(525))]也与庆大霉素浓度呈良好的线性关系,其线性回归方程为Δ(A_(680)/A_(5250)=0.21c-0.008(10~(-8)mol/L),r=0.9970。共振光散射法和比色法的样品加标回收率分别为101.6%~102.2%和99.2%~100.4%;相对标准偏差(n=11)分别为2.7%~7.8%和1.9%~7.5%;方法检出限分别为2.79 nmol/L和1.23 nmol/L。方法可用于牛奶中庆大霉素的测定。  相似文献   

3.
基于金纳米粒子自组装的分光光度法测定半胱氨酸   总被引:2,自引:0,他引:2  
李正平  段新瑞  白玉惠 《分析化学》2006,34(8):1149-1152
在pH 4.56的B ritton-Rob inson(B-R)缓冲溶液中,半胱氨酸的SH和NH3 分别与金纳米粒子表面进行共价结合和静电作用,导致金纳米粒子的长距离自组装,形成网状超分子结构,并使金纳米粒子的最大吸收波长从520 nm红移到660 nm。本实验对半胱氨酸引导的金纳米粒子自组装的作用机制进行了研究,建立了操作简便、高灵敏度测定半胱氨酸的分析方法。其线性范围为0.01~0.20 mg/L;检出限为2.8μg/L(3,σ2.3×10-8mol/L)。在实验条件下,其它常见的氨基酸和谷胱甘肽均不干扰测定。  相似文献   

4.
以2-硫代巴比妥酸(TBA)修饰金纳米粒子为探针,TBA与三聚氰胺通过氢键作用诱导金纳米探针团聚,进而使金纳米胶体颜色由酒红色变为蓝色。 实验优化得最佳反应条件为在乙酸缓冲溶液(pH=7.0)介质中,室温反应15 min。 对不同浓度三聚氰胺进行检测时发现,在0.062~0.18 μmol/L和0.18~6.0 μmol/L之间,A660/A520吸收比率与三聚氰胺浓度呈现良好的线性关系,检出限为0.043 μmol/L。 该方法用于检测牛奶样品中的三聚氰胺的加标回收率为102.8%~105.3%。  相似文献   

5.
采用电化学沉积法制备了纳米金修饰玻碳电极,并用循环伏安法和电化学阻抗法进行了表征,以此建立了一种直接测定鸟嘌呤的电分析方法。在磷酸盐缓冲溶液(pH 6.0)中,研究了鸟嘌呤在纳米金修饰电极上的电化学行为,实验结果表明,纳米金修饰电极可以增强鸟嘌呤在电极表面的吸附,并加快鸟嘌呤在电极表面的电子传输,使其电化学信号明显增大,检测灵敏度大大提高,该修饰电极对鸟嘌呤表现出良好的电催化性能。在优化实验条件下对鸟嘌呤进行测定,方法的线性范围为8.0×10-7~6.0×10-5mol/L,检出限为1.0×10-8mol/L,在鸟嘌呤浓度为1.0×10-5mol/L时测得RSD(n=10)为2.5%。  相似文献   

6.
唐杰  王健  王燚  李原芳 《分析化学》2011,(11):1629-1633
Cu2+能选择性氧化半胱氨酸,破坏半胱氨酸与金纳米颗粒之间金硫键的形成,阻止半胱氨酸导致的金纳米颗粒聚集。因而,金纳米颗粒可作为Cu2+氧化半胱氨酸的可视化指示剂,本实验据此建立了高选择性检测Cu2+的色度分析方法。在HCl-NaAc缓冲体系(pH 3.6)中,金纳米颗粒在525 nm处的吸光度值与Cu2+的浓度在8.0×10-8~2.0×10-6mol/L范围内呈良好的线性关系,相关系数为0.9962;检出限(3σ/k)为1.5×10-9mol/L。将本方法用于天然水体中Cu2+的测定,具有较好的精密度和准确度。  相似文献   

7.
基于罗丹明B(RhB)与金纳米粒子(AuNPs)的荧光共振能量转移,建立了一种简单、灵敏、快速测定药物卡托普利的新方法。初步探讨了方法机理,并对pH值、反应时间、AuNPs和RhB的浓度等实验条件进行了优化。优化实验条件下,方法的线性范围为9.2×10~(-8)~1.8×10~(-6) mol/L,检出限(S/N=3)为6.9×10~(-8) mol/L。该方法用于卡托普利药品中卡托普利的测定,获得了满意结果。  相似文献   

8.
基于不同聚集态金纳米粒子(Au NPs)对罗丹明B(Rh B)的荧光猝灭作用,建立了一种简单、灵敏、快速测定药物甲巯咪唑的新方法。初步探讨了方法机理,并对p H值、反应时间、Au NPs和Rh B的浓度等实验条件进行了优化。优化实验条件下,方法的线性范围为4.38×10-8~0.876×10-5mol/L,检出限(S/N=3)为3.30×10-8mol/L。该法用于甲巯咪唑药品中甲巯咪唑的测定,获得了满意结果。  相似文献   

9.
研究了舒必利在硅溶胶/纳米金/联吡啶钌修饰的金电极上的电化学发光行为,建立了电化学发光法检测舒必利的新方法。在最佳实验条件下,舒必利浓度在1.0×10-6~1.0×10-4mol/L范围内与发光强度呈良好的线性关系(r2=0.9954),检出限(S/N=3)为3.4×10-9mol/L。连续平行测定1.0×10-5mol/L的舒必利溶液8次,发光强度的相对标准偏差(RSDs)为1.5%。该电极用于样品测定,回收率为97.6%~102.1%。结果表明,纳米金表现出较好的电分析活性,对联吡啶钌具有较好的电催化作用,并可应用于舒必利药物的测定。  相似文献   

10.
采用硅烷试剂对气相二氧化硅表面进行活化,并以此为载体固定N-乙酰基-L-半胱氨酸修饰的金纳米(NAC-金纳米)和酪氨酸酶,最后得到的复合物作为荧光探针,建立测定邻苯二酚的固体荧光猝灭分析方法。考察了各种实验条件对酪氨酸酶和NAC-金纳米固定到气相二氧化硅表面的影响,并对其进行优化。用荧光光谱仪对NAC-金纳米-酪氨酸酶-气相二氧化硅的固体荧光进行研究并加以应用。实验结果表明,随着通入不同浓度的邻苯二酚溶液,固体粉末的荧光被有效猝灭,基于此建立了测定邻苯二酚的固体荧光法。该方法的检出限为1.0×10-7mol/L,线性范围为5.0×10-7~4.0×10-4mol/L。  相似文献   

11.
建立了一种测定食品中Cu的双波长叠加可见吸收光谱法。在pH 5.76的Tris-盐酸缓冲介质中,甲基蓝与Cu(Ⅱ)反应生成具有2个明显正吸收峰的蓝色离子缔合物,它们的正吸收波长分别位于527 nm和640 nm,表观摩尔吸光系数分别为2.42×10~4和2.31×10~4L/(mol·cm)。当用双波长叠加法测定时,其表观摩尔吸光系数(κ)可达4.37×10~4L/(mol·cm),它们的定量限分别为0.50 mg/100 g(527 nm),0.44 mg/100 g(640 nm)和0.24 mg/100 g(527 nm+640 nm)。Cu(Ⅱ)的质量浓度在0.1~1.6 mg/L内遵从比尔定律。还研究了吸收光谱特征、反应的适宜条件及共存物质的影响。方法用于食品中Cu的测定,加标回收率和相对标准偏差分别为97.9%~103%和2.3%~2.7%。  相似文献   

12.
以快速定量滤纸为基质,用KI作为重原子微扰剂,建立了快速测定中药材中西维因的固体基质室温磷光(SS-RTP)分析法。其最大激发和发射波长分别为284nm与520nm。在优化的实验条件下,西维因在4×10-6~2×10-4mol/L浓度范围内呈现良好的线性关系。在样品体积为10μL时,方法的检出限为0.89ng/斑点。所建立的方法用于中草药中西维因残留量的测定。  相似文献   

13.
运用循环伏安法及线性扫描伏安法研究了间苯二胺在金纳米粒子/碳纳米管修饰玻碳电极上的电化学行为,优化并建立了一种直接测定间苯二胺的电化学分析方法。结果表明,与裸玻碳电极相比,金纳米粒子/碳纳米管修饰电极能显著提高间苯二胺的氧化峰电流。在优化条件下,氧化峰电流与间苯二胺浓度在3.0×10-8~1.0×10-6mol/L范围内呈现良好的线性关系,检出限为1.0×10-8mol/L,对1.0×10-7mol/L的间苯二胺溶液平行测定10次的RSD为4.2%。测定了实验室废水中的间苯二胺含量,3次测定结果的平均回收率为99.7%,RSD为2.1%。  相似文献   

14.
利用纳米金种法制备墨鱼骨有机质纳米金复合膜(CDMS/AuNPs),构建一种有机质复合纳米材料的光学传感器。采用扫描电镜(SEM)和紫外-可见吸收光谱对复合膜的结构和光学性质进行表征。根据金纳米颗粒(AuNPs)的局域表面等离子体共振(LSPR)效应,利用亚硝酸盐还原氯金酸诱导纳米金种生长,进而应用于亚硝酸盐的检测。在优化实验条件下,CDMS/AuNPs传感器的吸光度与亚硝酸盐的浓度在2.5×10-6~5.0×10-5mol/L范围内呈良好的线性关系(R=0.9950),检出限为8.0×10-7 mol/L(S/N=3)。  相似文献   

15.
张多多  宗晨  王淑美  李萍 《分析测试学报》2017,36(10):1245-1249
碱性条件下,丹参酮ⅡA磺酸钠能够抑制鲁米诺-过氧化氢-银纳米粒子的化学发光,据此建立了测定丹参酮ⅡA磺酸钠的化学发光分析方法。通过优化发光底物浓度、反应介质及其浓度和银纳米粒子浓度等因素,确立了最佳实验条件,并探讨了体系的可能机理。在5.0×10~(-6)~0.08 mol/L浓度范围内,体系的化学发光强度与丹参酮ⅡA磺酸钠浓度的对数值呈线性关系,检出限为9.38×10~(-7)mol/L,检测时间为20 s。该方法灵敏度好,检测范围宽,可简单快速地测定注射液中丹参酮ⅡA磺酸钠的含量,检测结果与高效液相色谱法的测定结果较为一致。  相似文献   

16.
冷飞  李英  甄淑君  李原芳 《应用化学》2012,29(11):1329-1334
在pH=1.89的Britton-Robinson(BR)缓冲溶液中,阿莫西林与氯金酸反应生成金纳米粒子,在537和720 nm产生了特征等离子体共振吸收信号,其537 nm处的吸收强度与阿莫西林浓度在一定范围内呈线性关系,据此建立了基于金纳米粒子的等离子体共振吸收测定阿莫西林的方法。 在优化条件下(pH=1.89,反应温度65 ℃,反应时间40 min),测定阿莫西林的线性范围为2.0×10-6~3.6×10-5 mol/L,检出限为1.3×10-7 mol/L。 该方法用于合成样品中阿莫西林的测定,回收率在90.4%~103.2%之间,RSD小于4.6%,将所建立的方法用于2个厂家生产的阿莫西林胶囊中阿莫西林含量测定,并与HPLC法对比,结果满意。  相似文献   

17.
辛嘉英 《分子催化》2013,27(2):192-197
甲烷氧化菌素(methanobactin,mb)是具有过氧化氢还原酶活性的荧光肽.从甲基弯菌Methylosinus trichospo-rium IMV3011限铜培养介质中分离mb,采用紫外可见全波长扫描法观察mb催化对苯二酚还原氯金酸合成纳米金的作用和影响,当mb/氯金酸/对苯二酚反应液中mb的浓度分别是2.5×10-5mol/L、5.0×10-5mol/L和1.0×10-4mol/L时,形成的纳米金溶液的特征峰分别是561.5 nm(OD561=0.158)、548.0 nm(OD5 48=0.426)、536.5 nm(OD5 36=0.541),特征峰波长减小,对应的吸光值增大,表明mb能够催化对苯二酚还原氯金酸合成纳米金,并且可以通过调控mb的浓度控制纳米金的合成量及粒径大小.  相似文献   

18.
建立了以巯基丁二酸改性纳米金新型富集技术-毛细管电泳法同时测定硝基呋喃类药物残留。在最优分离条件下,呋喃唑酮、呋喃它酮、呋喃妥因和呋喃西林能有效富集和分离。在7.5×10~(-7)~1.0×10~(-4)mol/L范围内,峰面积与浓度呈现良好的线性关系,4种硝基呋喃类药物最低检测限分别为3.7×10~(-7),4.2×10~(-7),2.2×10~(-7),4.3×10~(-7)mol/L。实验结果表明,改性金纳米粒子对样品的富集倍数可达92~146倍。该方法用于分析实际鳗鱼样品,回收率介于79.0%~96.4%之间,RSD为2.1%~5.5%。  相似文献   

19.
氯霉素在纳米钴修饰玻碳电极上的电化学行为及测定研究   总被引:2,自引:0,他引:2  
研究了氯霉素在纳米钴修饰玻碳电极上的电化学行为及测定.实验结果表明,在0.3 mol/L NH3-NH4Cl(pH10.0)缓冲溶液中,氯霉素在裸玻碳电极或纳米钴修饰电极上均发生不可逆还原反应,但与裸玻碳电极相比,纳米钴修饰电极对氯霉素的还原具有明显的增敏作用,灵敏度增加约6倍.对支持电解质、修饰剂用量等各种实验条件进行了优化.测得峰电流Ip与氯霉素浓度在5.0×10(-6)~1.2×10(-4)mol/L范围内呈良好的线性关系,相关系数为0.997,检出限为3.0×10(-7)mol/L.利用优化后的条件对氯霉素滴眼液进行了测定,测量值与标示值符合,回收率在98.7%~102.2%.  相似文献   

20.
铕-苯胺蓝-阿米卡星的显色反应及其应用   总被引:2,自引:0,他引:2  
在微酸性条件下,铕-苯胺蓝(ABWS)与阿米卡星(AMK)反应,生成三元蓝色离子缔合物。其最大正吸收波长位于676 nm,最大负吸收波长位于606 nm,表观摩尔吸光系数分别为4.59×104和9.25×104L.mol-1.cm-1;用双波长法测定时,摩尔吸光系数可达1.38×105L.mol-1.cm-1;AMK浓度在0~1.5 mol.L-1(正吸收)和0~1.6 mol.L-1(负吸收)之间遵守比耳定律。由此建立了测定阿米卡星的单波长及双波长分光光度法。方法用于市售药物及人体尿液中阿米卡星含量的测定,所得测定值的RSD均小于1.5%,回收率试验的结果在99.7%~100.3%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号