首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文制备了一种乙炔黑修饰电极,研究了氧氟沙星(OFL)在该修饰电极上的循环伏安行为。结果表明,在pH=5的PBS缓冲液中,氧氟沙星在该修饰电极上出现一不可逆的氧化峰,在40~360 mV/s扫速范围内,氧化峰电流与扫速呈线性关系,表明该电极过程受吸附控制。计算了电极过程的部分动力学参数:反应电子数为2,电极有效面积为0.067 cm2。讨论了修饰剂用量、缓冲液种类、溶液pH值对测定的影响。用方波溶出伏安法对OFL进行测定,在2.5×10-6~2.5×10-4mol.L-1的浓度范围内与氧化峰电流(Ipa)呈线性关系,Ipa(μA)=-1.6148+0.2169c(10-6 mol.L-1),相关系数为0.9951,检出限为1.332×10-7 mol.L-1,回收率为90.40%~101.06%。  相似文献   

2.
制备了聚磷钨酸/壳聚糖-乙炔黑修饰电极(p-PTA/CS-AB/GCE),采用循环伏安法(CV)研究了氯霉素在该修饰电极上的电化学行为。结果表明,在p H 6.0的PBS溶液中,氯霉素(CAP)在该修饰电极上出现1个还原峰,在40~400 m V/s扫速范围内,CAP的还原峰电流与扫速呈线性关系,说明CAP在修饰电极上的电化学反应过程是受吸附控制的不可逆过程。用差分脉冲伏安法(DPV)对不同浓度的CAP进行检测,在5.0×10-7~1.0×10-4mol/L浓度范围内,还原峰电流与浓度呈线性关系,检出限(S/N=3)为5.13×10-8mol/L。用该方法对氯霉素片进行检测,相对标准偏差(RSD)为1.4%,回收率为97.7%~105.1%。  相似文献   

3.
本文制备了磷钨酸/乙炔黑修饰电极(PTA/AB/GCE),用循环伏安法(CV)研究了阿昔洛韦(ACV)在该修饰电极上的循环伏安行为。结果表明在pH 6.0的磷酸盐缓冲液中,ACV在该修饰电极上出现一明显的氧化峰。在60~220mV.s-1扫速范围内,其氧化峰电流(Ipa)与扫速平方根(v1/2)呈线性关系,表明该电极过程是受扩散控制的不可逆过程。计算了电极过程的部分动力学参数:电极有效面积为0.06902cm2,转移电子数为2,扩散系数为2.063×10-6cm2.s-1。运用方波溶出伏安法测定不同浓度ACV的方波溶出伏安曲线,结果表明氧化峰电流(Ipa)与ACV浓度在7.8×10-7~1.0×10-4mol.L-1范围内呈良好线性关系(r=0.9924),检出限(S/N=3)为3.1×10-7mol.L-1,加标回收率为95.69%~107.2%。  相似文献   

4.
制备了聚磷钼酸/乙炔黑修饰电极(PMA/AB/GCE),用循环伏安法(CV)研究了乙萘酚(EN)在该电极上的循环伏安行为。在pH 5.5的HAc-NaAc缓冲液中,EN在该修饰电极上出现一明显的氧化峰。在60~300 mV/s扫速范围内,其氧化峰电流(I pa)与扫速平方根(v1/2)呈线性关系,表明该电极过程是受扩散控制的不可逆过程。计算电极过程的部分动力学参数:电极有效面积为0.122 cm2,质子数与电子数均为1,扩散系数为D为9.64×10-5cm2/s。运用方波伏安法测定不同浓度EN的方波伏安曲线,结果表明氧化峰电流与EN浓度在9.0×10-7~1.0×10-4mol/L范围内呈良好线性关系(r=0.992),检出限(S/N=3)为6.35×10-7mol/L,加标回收率为92.8%~102.8%。  相似文献   

5.
聚精氨酸修饰玻碳电极上多巴胺的电化学特性及其检测   总被引:3,自引:0,他引:3  
用循环伏安法制备了聚精氨酸修饰玻碳电极,研究了神经递质多巴胺在该聚合物薄膜修饰电极上的电化学行为及其检测。在pH7.0的磷酸盐缓冲溶液中,多巴胺在聚精氨酸修饰电极上于0.19V和0.16V处出现一对灵敏、可逆的氧化还原峰。在最佳测试条件下,氧化峰电流与多巴胺的浓度在3.0×10-7~8.0×10-4mol/L范围内呈良好的线性关系,线性回归方程为Ipa(μA)=86.063C(mmol/L) 20.183,相关系数r=0.9993,最低检测限(3σ)5.0×10-8mol/L。用于多巴胺针剂含量的测定,结果满意。  相似文献   

6.
制备了乙炔黑修饰电极(AB/GCE),并用循环伏安法(CV)研究了吡虫啉(IDP)在该修饰电极上的循环伏安行为。在pH 9.0的NH3.H2O-NH4Cl缓冲液中,IDP在该电极上出现一不可逆的还原峰。在20~240mV/s扫速范围内,其还原峰电流(Ipc)与扫速平方根(v1/2)呈线性关系,表明该电极过程受扩散控制。计算了电极过程的部分动力学参数:电极有效面积为0.0635cm2,转移电子数为2,扩散系数为3.793×10-3cm2/s。运用方波伏安法测定不同浓度IDP的方波伏安曲线,还原峰电流Ipc与IDP浓度在7.0×10-7~8.0×10-5mol/L范围内呈良好线性关系(r=0.9975),检出限为2.29×10-7mol/L,加标回收率为93.5%~105.3%。  相似文献   

7.
采用亚硝基五氰合铁酸铁(FePCNF)粉末与碳粉质量比为2∶3混合,制备了FePCNF修饰碳糊电极.研究了FePCNF修饰碳糊电极在KNO3溶液中的电化学行为和扫速、pH值及不同支持电解质的影响.该电极可用于催化氧化检测葡萄糖.实验表明:FePCNF修饰碳糊电极在0.5 mol/L KNO3溶液中有一对灵敏的氧化还原峰,峰电流与扫速呈线性关系.氧化峰电流与葡萄糖的浓度在2.0×10-6~2.4×10-5 mol/L之间有良好的线性关系(r=0.9934),检出限为6.3×10-7 mol/L.该电极具有良好的稳定性和重现性,适合于微量葡萄糖的检测.  相似文献   

8.
采用线性循环溶出伏安法和差分脉冲溶出伏安法对磺胺嘧啶在电活化玻碳电极上的电化学行为进行了研究。玻碳电极在PBS溶液中(pH 7.0),用恒电位法在1.7 V阳极氧化400 s,在B-R缓冲溶液中,磺胺嘧啶在1.02V(vs.Ag/AgCl)处有一良好的氧化峰,在0.02~0.25 V/s范围内,其氧化峰电流与扫描速率呈良好线性关系,表明电极过程为受吸附控制的不可逆过程。差分脉冲溶出伏安法的氧化峰电流(Ipa)与磺胺嘧啶浓度1×10-6~1×10-4mol/L范围内呈良好的线性关系(r=0.9977),检出限为8.7×10-7mol/L(S/N=3)。方法已用于分析磺胺嘧啶片剂的分析。  相似文献   

9.
将硫桥杯[4]芳烃衍生物25,27-二(2-噻二唑基硫代乙氧基)-26,28-二甲氧基-5,11,17,23-四叔丁基硫桥杯[4]芳烃(TTCA)溶于二氯甲烷中,滴涂在玻碳电极表面,制得硫桥杯[4]芳烃修饰的玻碳电极。循环伏安当研究结果表明:将此修饰电极浸泡在1.0×10-6mol.L-1铅(Ⅱ)溶液中一段时间后转移至0.1 mol.L-1硝酸溶液中,以扫速100 mV.s-1在电位-0.8~-0.2 V范围内扫描所得的CV图上出现一对氧化还原峰。当此修饰电极在上述浓度的铅(Ⅱ)溶液中于-1.1 V富集300 s后用差分脉冲溶出伏安法检测时,铅(Ⅱ)在-0.516 V处出现一良好的氧化峰。铅(Ⅱ)浓度在2.0×10-7~2.0×10-5mol.L-1范围内与峰电流呈线性关系。其检出限(3S/N)为8.0×10-9mol.L-1。此法应用于水样中痕量铅的测定,测得回收率在95.0%~104.0%之间。  相似文献   

10.
采用电聚合和滴涂法制备了乙炔黑/聚对氨基苯磺酸修饰电极(AB/PABSA/GCE),并用交流阻抗法(EIS)进行了表征,运用循环伏安法(CV)对实验条件进行优化后,研究了香兰素(Van)在AB/PABSA/GCE上的电化学行为。结果表明,在p H 7.0的PBS溶液中,Van在该修饰电极上有1个氧化峰,无还原峰,在40~300 m V/s扫速范围内,Van氧化峰电流与扫速呈线性关系,说明Van在该电极上的电化学反应过程是受吸附控制的不可逆过程。该反应过程中电子转移数及参加反应的质子数均为2,电极有效面积A=0.065 7cm2,扩散系数D=1.557×10-3cm2/s,反应物吸附量Γ=2.249×10-8mol/cm2。采用计时电流法(CA)对不同浓度的Van进行测定,结果发现在5~460μmol/L浓度范围内,氧化峰电流与浓度呈良好的线性关系(r=-0.998 5),检出限为2.09×10-7mol/L。运用该方法对巧克力样品进行了检测,回收率为93.0%~114.2%。  相似文献   

11.
制备了石墨烯和疏水性离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)复合修饰电极(Gene-BMIMPF6/GCE),运用循环伏安法研究了对乙酰氨基酚(PT)在该复合修饰电极上的电化学行为。结果表明,在pH=6.5的磷酸盐缓冲溶液中,PT在复合修饰电极上出现一对明显的氧化还原峰,在20~260mV/s的扫描速率范围内,其氧化还原峰电流均与扫描速率平方根(v1/2)呈线性关系,表明该电极过程是受扩散控制的。优化了方波溶出伏安法(SWSV)的实验参数,PT浓度在6.0×10-7~8.0×10-5mol/L范围内与峰电流Ipa呈线性关系,检出限(S/N=3)为1.0×10-7 mol/L。采用该法对PT进行加入回收测定,回收率为96.9%~101.2%。  相似文献   

12.
采用乙炔黑(Acetylene Black,AB)和离子液体(1-丁基-3-甲基咪唑六氟磷酸盐[BMIM]PF6)作为复合修饰材料,制备乙炔黑-离子液体复合修饰电极(AB-[BMIM]PF6/GCE)。用红外光谱法对AB-[BMIM]PF6/GCE进行表征,用循环伏安法(CV)研究阿昔洛韦(ACV)在该修饰电极上的电化学行为。实验结果表明,在pH=4.70的磷酸盐缓冲液(PBS)中,ACV在该修饰电极上出现一氧化峰。在20~280mV/s扫速范围内,氧化峰电流与扫速平方根呈线性关系,表明该电极过程是受扩散控制。电极过程的部分动力学参数分别为:电极有效面积0.076cm2,转移电子数2,扩散系数1.817×10-4 cm2/s。用方波伏安法(SWV)测定一系列不同浓度的ACV溶液,结果表明其氧化峰电流与ACV浓度在7.0×10-7~1.0×10-4 mol/L范围内呈良好线性关系,相关系数为0.993,检出限(S/N=3)为2.30×10-7 mol/L,加标回收率为95.0%~105.6%。  相似文献   

13.
采用循环伏安法和差分脉冲伏安法研究了沙丁胺醇在石墨烯/聚硫堇修饰玻碳电极上的电化学行为,该电化学传感器对沙丁胺醇显示出良好的电化学响应。在pH 7.0,扫描范围为-0.6~0.4 V,扫速为80 mV/s条件下,沙丁胺醇的氧化峰电流与其浓度在3.1×10-7~8.5×10-5mol/L范围内呈良好线性关系,检出限达9.6×10-8mol/L。结果显示石墨烯/聚硫堇修饰玻碳电极具有良好的重现性和稳定性。  相似文献   

14.
采用滴涂法制备了石墨烯/磷钨酸修饰电极(GO-PTA/GCE),运用循环伏安法研究了茶碱(THEO)在该修饰电极上的电化学行为,并讨论了修饰剂石墨烯和磷钨酸的配比及用量、底液种类及浓度、扫速对其测定的影响。运用交流阻抗法研究修饰前后电极表面的特性。结果表明,在0.02 mol/L H2SO4溶液中,THEO在该修饰电极上于1.185 V出现一不可逆氧化峰,且在100~800 mV/s范围内,其峰电流与扫速平方根(v1/2)呈线性关系,表明该电极过程为受扩散控制的不可逆过程。THEO在该修饰电极上的电子转移数n=1,有效面积A=0.116 9 cm2,扩散系数D=6.675×10-5cm2/s。在优化实验条件下,采用差分脉冲伏安法对THEO进行定量测定,发现THEO的峰电流与其浓度在6.0×10-7~1.0×10-4mol/L范围内呈良好的线性关系,检出限可达5.5×10-7mol/L。采用该法对水样中THEO进行检测,回收率为92.6%~106.3%。  相似文献   

15.
采用循环伏安法制备了电还原柠嗪酸膜修饰碳糊电极(ECA/CPE),研究了多巴胺(DA)在该修饰电极上的电化学行为。在pH 7.0的磷酸盐缓冲溶液中,ECA/CPE对DA具有明显的电催化作用,且DA呈现出一对准可逆的氧化还原峰,其氧化峰电流与DA浓度在3.7×10-7~8.2×10-5mol/L和1.04×10-4~9.34×10-4mol/L范围内呈良好的线性关系,检出限为1×10-7mol/L(S/N=3)。使用微分脉冲伏安法,DA和尿酸(UA)在ECA/CPE上的氧化峰能完全分离,且峰电流与浓度呈良好的线性关系。该电极可用于盐酸多巴胺针剂中DA的测定以及人体尿液中UA的检测。  相似文献   

16.
制备了壳聚糖-氧化石墨烯自组装膜修饰玻碳电极(CS-GO/GC),并用电化学阻抗法进行表征,研究了苏丹红Ⅰ在该修饰电极上的电化学行为。实验结果表明,苏丹红Ⅰ在该修饰电极上出现了1个氧化峰,为不可逆电化学反应。在50~250 mV.s-1扫速范围内,氧化峰电流与扫速呈线性关系,该电极过程受吸附控制,苏丹红Ⅰ在修饰电极上的电子转移数和质子数均为1,扩散系数为1.70×10-6cm2.s-1。采用差分脉冲伏安法对苏丹红Ⅰ进行测定,结果表明,苏丹红Ⅰ浓度与其氧化峰电流在6.0×10-8~5.0×10-6mol/L范围内呈良好的线性关系,相关系数为0.995,检出限为4.45×10-8mol/L。该修饰电极具有良好的重现性和稳定性,可简便、快捷、灵敏地检测咸鸭蛋黄中苏丹红Ⅰ的含量。  相似文献   

17.
运用循环伏安法研究了双氯芬酸钠(DS)在石墨烯(Gene)和室温离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)复合修饰电极上的电化学行为。DS在该复合电极上于0.65V处有一不可逆氧化峰。在40~200 mV/s范围内,其氧化峰电流与扫描速率平方根(v1/2)呈良好线性关系,表明电极过程是受扩散控制。测定了部分电极过程参数,优化了方波溶出伏安法(SWSV)的实验参数,DS浓度在1.0×10-7~1.0×10-4mol/L范围内与峰电流Ipa呈良好线性关系,检出限为8.0×10-8mol/L(S/N=3),加标回收率为95.7%~101.7%。  相似文献   

18.
利用电化学沉积法制备了稀土Eu(Ⅲ)离子掺杂的类普鲁士蓝化学修饰玻碳电极,与裸玻碳电极相比,该修饰电极使对硝基苯酚的还原电位大大降低,峰电流显著增大,线性范围明显变宽。讨论了酸度、沉积量、扫速、底液等条件对对硝基苯酚在修饰电极上催化还原的影响。分别用循环伏安法和示差脉冲伏安法进行定量分析,对硝基苯酚的还原电流与浓度在2.0×10-5~2.0×10-3mol/L和2.0×10-7~8.0×10-6mol/L范围内呈良好的线性关系,检出限(3σ)为6.0×10-8mol/L。该电极可用于环境水样检测。  相似文献   

19.
采用循环伏安法(CV)制备了曙红修饰玻碳电极(eosin Y/GCE),电化学交流阻抗法对修饰电极表面进行了表征,研究了特丁基对苯二酚(TBHQ)在该修饰电极上的电化学行为,建立了循环伏安法和差分脉冲伏安法(DPV)测定TBHQ的新方法。研究表明,修饰电极对TBHQ的氧化还原具有较好的电催化活性,在eosin Y/GCE上的氧化还原峰电位差从297 m V降至85 m V。在20~400 m V·s-1范围内,其氧化还原峰电流与扫速的平方根呈良好的线性关系,表明TBHQ在eosin Y/GCE上的电极反应受扩散控制。在0.10 mol·L-1磷酸盐缓冲溶液(p H 6.5)中,扫速为100 m V·s-1时,此修饰电极的DPV响应与TBHQ浓度在1~200μmol·L-1范围内呈线性关系,检出限(S/N=3)为0.1μmol·L-1。此修饰电极具有良好的选择性、重现性和稳定性,应用于油品中TBHQ的测定,回收率达95.0%~102.5%。该电极有望应用于多种食品中抗氧化剂的检测。  相似文献   

20.
制备了纳米银/壳聚糖(AgCS)与乙炔黑(AB)复合修饰电极(AgCS-AB/GCE),用紫外可见分光光度法、扫描电镜法对AgCS进行表征,用交流阻抗法对不同电极进行表征,用循环伏安法(CV)研究了乙萘酚(β-N)在AgCS-AB/GCE上的循环伏安行为。结果表明,在pH 6.5的PBS缓冲液中,β-N在该修饰电极上出现一明显氧化峰,在60~240 mV/s扫速范围内,β-N的氧化峰电流(I pa)与对应扫速平方根(v1/2)呈良好的线性关系,表明β-N在该电极上的电化学过程为受扩散控制的不可逆过程。计算了电极过程的动力学参数,运用方波伏安法测定不同浓度β-N的方波伏安曲线,结果表明β-N的氧化峰电流与其浓度在3.0×10-7~2.0×10-4mol/L范围内呈良好线性关系(r=0.996),检出限(S/N=3)为1.24×10-7mol/L,加标回收率为99%~105%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号