首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we report the synthesis of magnetic sulfur-doped Fe_3O_4 nanoparticles (Fe_3O_4:S NPs) with a novel simple strategy,which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe_3O_4:S NPs exhibit a much better adsorption performance towards Pb(Ⅱ) than bare Fe_3O_4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(Ⅱ) by Fe_3O_4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis,and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(Ⅱ) adsorption. Thus, Fe_3O_4:S NPs are supposed to be a good adsorbents for Pb(Ⅱ) ions in environmental remediation.  相似文献   

2.
Functionalized magnetic Fe_3O_4@SiO_2 composite nanoparticles were prepared by simply embedding iron oxide nanoparticles into MCM-41 through one-step synthesis process, followed by aminopropyls grafting on the mesopore channels, aiming to efficiently and conveniently uptake U(VI) from aqueous solution. The resultant material possesses highly ordered mesoporous structure with large surface area, uniform pore size, excellent thermal stability, quick magnetic response, and desirable acids resistance, confirmed by Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), N_2 adsorption/desorption experiments, powder X-ray diffraction(PXRD), and thermogravimetric analysis(TGA). Detailed U(VI) sorption test indicated that this material is indeed an effective U(VI) sorbent with fast sorption kinetics of less than 2 h, large sorption capacity of 160 mg/g at p H 5.0±0.1, and desirable selectivity towards U(VI) ions over a range of competing metal ions. The absorbed U(VI) can be easily desorbed by 0.01 mol/L or more concentrated HNO_3 solution, and the reclaimed sorbent can be reused with no obvious decrease of sorption capacity even after 4 sorption-desorption cycles. The present results suggest the vast opportunities of this kind of magnetic composite on the solid-phase extraction of U(VI).  相似文献   

3.
In this work, a metal-organic framework derived nanoporous carbon(MOF-5-C) was fabricated and modified with Fe_3O_4 magnetic nanoparticles. The resulting magnetic MOF-5-derived porous carbon(Fe_3O_4@MOF-5-C) was then used for the magnetic solid-phase extraction of chlorophenols(CPs) from mushroom samples prior to high performance liquid chromatography–ultraviolet detection. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N_2 adsorption were used to characterize the adsorbent. After experimental optimization, the amount of the adsorbent was chosen as 8.0 mg, extraction time as 10 min, sample volume as 50 m L, desorption solvent as 0.4 m L(0.2 mL×2)of alkaline methanol, and sample p H as 6. Under the above optimized conditions, good linearity for the analytes was obtained in the range of 0.8–100.0 ng g~(-1)with the correlation coefficients between0.9923 and 0.9963. The limits of detection(S/N = 3) were in the range of 0.25–0.30 ng g~(-1), and the relative standard deviations were below 6.8%. The result showed that the Fe3O4@MOF-5-C has an excellent adsorption capacity for the analytes.  相似文献   

4.
In this protocol, Ag supported on the hydroxyapatite-core–shell magnetic γ-Fe_2O_3nanoparticles(γFe_2O_3@HAp-Ag NPs) as a novel, efficient, and magnetically recyclable catalyst is synthesized, and characterized by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD), and vibrating sample magnetometry(VSM). The use of the catalyst is described in the synthesis of coumarin derivatives by the Pechmann condensation of various phenols with β-ketoesters under solvent- and halogen-free conditions at 80℃.This novel and inexpensive method offers advantages, such as recyclability simple experimental protocol, short reaction time, minimal work-up procedure, and excellent yields of products, together with desirable, eco-friendly, green aspects by avoiding toxic elements and solvents, and ease of recovery from the reaction mixture using an external magnet.  相似文献   

5.
In this work we synthesize a novel and highly efficient photocatalyst for degradation of methyl orange and rhodamine B. In addition, a new method for synthesis of Fe_3O_4@SiO_2@TiO_2@Ho magnetic core-shell nanoparticles with spherical morphology is proposed. The crystal structures, morphology and chemical properties of the as-synthesized nanoparticles were characterized using Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive X-ray(EDS), X-ray diffraction(XRD), UV–vis diffuse reflectance spectroscopy(DRS) and vibrating sample magnetometer(VSM) techniques. The photocatalytic activity of Fe_3O_4@SiO_2@TiO_2@Ho was investigated by degradation of methyl orange(MO) as cationic dye and rhodamine B(Rh B) as anionic dye in aqueous solution under UV/vis irradiation. The results indicate that about 92.1% of Rh B and78.4% of MO were degraded after 120 and 150 min, respectively. These degradation results show that Fe_3O_4@SiO_2@TiO_2@Ho nanoparticles are better photocatalyst than Fe3O4@Si O2@TiO 2@Ho for degradation of MO and Rh B. As well as, the catalyst shows high recovery and stability even after several separation cycles.  相似文献   

6.
A magnetic sensor for detection of Pb~(2+) has been developed based on Fe/Fe_3O_4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb~(2+) thus inducing the transformation of Fe/Fe_3O_4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T_2) of the surrounding water protons. Upon addition of the different concentrations of Pb~(2+) to an aq. solution of DHCA functionalized Fe/Fe_3O_4 nanoparticles(DHCA-Fe/Fe_3O_4 NPs)([Fe] = 90 mmol/L), the change of T_2 values display a good linear relationship with the concentration of Pb~(2+) from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb~(2+), DHCA-Fe/Fe_3O_4 NPs exhibited a high selectivity over other metal ions.  相似文献   

7.
A facile and green synthetic approach for fabrication of starch-stabilized magnetite nanoparticles was implemented at moderate temperature. This synthesis involved the use of iron salts, potato starch,sodium hydroxide and deionized water as iron precursors, stabilizer, reducing agent and solvent respectively. The nanoparticles(NPs) were characterized by UV-vis, PXRD, HR-TEM, FESEM, EDX, VSM and FT-IR spectroscopy. The ultrasonic assisted co-precipitation technique provides well formation of highly distributed starch/Fe_3O_4-NPs. Based on UV–vis analysis, the sample showed the characteristic of surface plasmon resonance in the presence of Fe_3O_4-NPs. The PXRD pattern depicted the characteristic of the cubic lattice structure of Fe_3O_4-NPs. HR-TEM analysis showed the good dispersion of NPs with a mean diameter and standard deviation of 10.68 4.207 nm. The d spacing measured from the lattice images were found to be around 0.30 nm and 0.52 nm attributed to the Fe3O4 and starch, respectively. FESEM analysis confirmed the formation of spherical starch/Fe_3O_4-NPs with the emission of elements of C, O and Fe by EDX analysis. The magnetic properties illustrated by VSM analysis indicated that the as synthesized sample has a saturation magnetization and coercivity of 5.30 emu/g and 22.898 G respectively.Additionally, the FTIR analysis confirmed the binding of starch with Fe_3O_4-NPs. This method was cost effective, facile and eco-friendly alternative for preparation of NPs.  相似文献   

8.
Magnetic nanoparticles show great potential in RNA enrichment and separation for rapid detection of viral infection.Fundamental studies on the interaction between RNA and nanoparticles with uniform size and surface property are necessary for designing better adsorbent and optimizing the conditions.In this study,monodispersed superparamagnetic magnetite(Fe3O4) nanoparticles were synthesized by thermal decomposition and modified with tetramethylammonium hydroxide[N(CH3)4OH,TMAOH] that become highly dispersible and stable in water.High-efficiency plant viral RNA adsorption onto TMAOH/Fe3O4 nanoparticles in the extracted solution of plant leaves was demonstrated.The changes of surface charge of TMAOH on the Fe3O4 nanoparticles with pH contribute to the RNA adsorption and elution.Separating viral RNA with magnetic nanoparticles could be a simple,quick andhighly efficient method.  相似文献   

9.
A coprecipitation method was used to synthesize superparamagnetic CoFe2O4 nanoparticles without using any capping agents/surfactants. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, a vibrating sample magnetometer (VSM), N2 adsorption and thermogravimetric/differential thermal analysis/differential thermal gravimetry techniques. The synthesized spinel CoFe2O4 nanoparticles had an average size of 2-8 nm with a high surface area (140.9 m2/g). The field-dependent magnetization, demonstrated by VSM and saturation magnetization, was found to be 1.77 emu/g. An efficient method was used for the synthesis of arylidene barbituric acid derivatives using CoFe2O4 magnetic nanoparticles as a magnetically separable and reusable catalyst in aqueous ethanol. The attractive features of this synthetic protocol were very short reaction time, high yields, high turnover frequency, simple work-up procedure, economy, a clean reaction methodology, and chemoselectivity, as well as provision of an ecofriendly and green synthesis.  相似文献   

10.
A novel hydrophilic nanocomposite additive(TiO2-g-PNIPAAm) was synthesized by the surface modification of titanium dioxide(TiO2) with N-isopropylacrylamide(NIPAAm) via "graft-from" technique. And the nanocomposite membrane of poly(vinylidene fluoride)(PVDF)/TiO2-g-PNIPAAm was fabricated by wet phase inversion. The graft degree was obtained by thermo-gravimetric analysis(TGA). Fourier transform infrared attenuated reflection spectroscopy(FTIR-ATR) and X-ray photoelectronic spectroscopy(XPS) characterization results suggested that TiO2-g-PNIPAAm nanoparticles segregated on membrane surface during the phase separation process. Scanning electron microscopy(SEM) was conducted to investigate the surface and cross-section of the modified membranes. The water contact angle measurements confirmed that TiO2-g-PNIPAAm nanoparticles endowed PVDF membranes better hydrophlilicity and thermo-responsive properties compared with those of the pristine PVDF membrane. The water contact angle decreased from 92.8° of the PVDF membrane to 61.2° of the nanocompostie membrane. Bovine serum albumin(BSA) static and dynamic adsorption experiments suggested that excellent antifouling properties of membranes was acquired after adding TiO2-gPNIPAAm. The maximum BSA adsorption at 40 °C was about 3 times than that at 23 °C. The permeation experiments indicated the water flux recover ratio and BSA rejection ratio were improved at different temperatures.  相似文献   

11.
In this study a new series of magnetic and heat resistant nanocomposites were prepared based on a highly soluble poly(imideether)(PIE) reinforced with two different types of magnetic nanoparticles via a solution intercalation technique. New PIE with good solubility and desired molar mass containing bulky xanthene rings and amide groups in the side chains was synthesized via thermal cyclization of the poly(amic acid) precursor, obtained from the reaction of a new diamine derived from 9 H-xanthene and 4,4′-oxydiphthalic dianhydride(ODPA). Improved solubility was attributed to the presence of xanthene group and flexible ether linkage in the polyimide backbones that reduce the chain-chain interaction and enhance solubility by penetrating solvent molecules into the polyimide chains. Fe3 O4 nanoparticles(MNPs) which synthesized from chemical co-precipitation route were coated with silica(Si O2), sequentially with(3-aminopropyl)triethoxysilane and poly-melamine-terephthaldehyde(MNPs-PMT), and then separately dispersed in the poly(amic acid) solutions and thermally imidized to form PIE/Fe3 O4 and PIE/MNPs-PMT nanocomposites. The nanostructures and properties of the resultant materials were investigated using FTIR spectroscopy, X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), vibrating sample magnetometer(VSM), thermal gravimetric analysis(TGA) and differential scanning calorimetry(DSC). The properties of the nanocomposites were strongly related to the dispersion and interaction between the nanoparticles and PIE matrix. The thermogravimetric analysis(TGA) results showed that the addition of MNPs-PMT nanoparticles resulted in a substantial increase in the thermal stability of the corresponding PIEN. The temperature at 10% weight loss(T10) was increased from 416 °C to 428 °C for PIEN containing 3 wt% MNPs-PMT as compared to neat PIE, as well the char yield enhanced. Furthermore, the MNPs-PMT nanoparticles had better dispersion in the polymer matrix due to the strong intermolecular hydrogen bond interactions between the NH and C=N groups of surface-modified nanoparticles and the PIE matrix than the uncoated Fe3 O4 nanoparticles, and exhibited a better intercalated morphology and improved thermal properties. Also, the PIEN nanocomposites under applied magnetic field exhibited the hysteretic loops of the superparamagnetic nature.  相似文献   

12.
Porous chitosan(CS)/magnetic(Fe3O4 )/ferric hydroxide(Fe(OH)3 ) microsphere as novel and low-cost adsorbents for the removal of As(Ⅲ) have been synthesized via the electrospraying technology by a simple process of two steps. Characterization of the obtained adsorbents was studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The adsorption kinetics and equilibrium isotherms were investigated in batch experiments. The Langmuir, Freundlich isotherm and pseudo-second order kinetic models agree well with the experimental data. The adsorption of As(Ⅲ) onto CS/Fe3O4 /Fe(OH)3 microspheres occurred rapidly and reached adsorption equilibrium after about 45 min. The maximum adsorption capacity of CS/Fe3O4 /Fe(OH)3 microspheres, calculated by the Langmuir isotherm model, was 8.47 mg g-1 , which is higher than that of CS/Fe3O4 /Fe(OH) 3 prepared by the conventional method (4.72 mg g-1 ). The results showed that the microspheres had a high adsorption capacity for As(Ⅲ) and a high separation efficiency due to their microporous structure and superparamagnetic characteristics. Present research may eventually lead to a simple and low cost method for fabricating microporous materials and application for removal of arsenic from aqueous solution.  相似文献   

13.
Co_3O_4/CeO_2 composites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcination in N_2 atmosphere. The samples were characterized by various means such as nitrogen adsorption/desorption, X-ray diffraction(XRD), H_2 temperature-programmed reduction(H_2-TPR),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). Results showed that the modified catalyst had the mesoporous structure, comparatively higher amount of surface oxygen and larger oxygen vacancies than others. As a result of the structure and surface composition merits, a high methane combustion conversion(50%) could be obtained at a low temperature of 262 °C for the modified Co_3O_4/CeO_2 composites catalysts. The experimental results demonstrated that ultrasonic impregnation treatment combined with the N_2 thermal treatment prior to calcination in air had a promising application for preparation of Co_3O_4/CeO_2 composites catalysts for low-temperature catalytic combustion of methane.  相似文献   

14.
An in situ reduction method has been developed to fabricate metallic Ag nanoparticles inside the channels of mesoporous carbon CMK-3.This approach combines function of the CMK-3 surface by oxidation using HNO_3 with the subsequent absorption of Ag~ . The resultant nanocomposite materials were characterized by nitrogen adsorption,X-ray diffraction,Auger electron spectroscopy and transmission electron microscopy.Compared with the conventional impregnation method,our approach shows that Ag nanoparticles of 2-4 nm can be uniformly incorporated into CMK-3.  相似文献   

15.
Al(OH)_3 modified nickel slag adsorbent was prepared by sintering technology. The structure of the sample was characterized by BET, XRD, IR, SEM and EDAX. The sample's adsorption performance of Pb~(2+) and Cu~(2+) from aqueous solution was studied. Results indicated that the adsorbent is a loose and porous mesoporous material. Its surface had mass aluminosilicate, high-activity γ-Al_2O_3 and its p H ranges from 4 to 12 that all have negative charges. The BET surface of the adsorbent is 23.90 m~2/g. Furthermore, its surface contains rich oxygenic functional groups, which could not only provide abundant adsorption sites for Pb~(2+) and Cu~(2+), but also improve the adsorption performance of Pb~(2+) and Cu~(2+) from waste water through the complexation of heavy metal ions. The best p H values selected in the adsorption of Pb~(2+) and Cu~(2+) are 6 and 5, respectively. With the increase of the initial concentration of simulated solution, the adsorption capacities of Pb~(2+) and Cu~(2+) gradually increased but the removal rates showed a downward trend. The competitive adsorption results of Pb~(2+) and Cu~(2+) showed that Pb~(2+) has better preferential adsorption than Cu~(2+).  相似文献   

16.
吴国章 《高分子科学》2011,29(5):580-585
A novel method for preparation of polymer-based magnetic microspheres was proposed by utilizing melt reactive blending,which was based on selective location of Fe_3O_4 nanoparticles in PA6 domains of polystyrene(PS)/polyamide 6 (PA6) immiscible blends.The morphology of PA6/Fe_3O_4 composite magnetic microspheres was studied by scanning electronic microscopy(SEM).The composite magnetic microspheres were spherical with a diameter range of 0.5-8μm;the diameter was sharply decreased with a very narrow distri...  相似文献   

17.
 The composites comprising Fe-carbon nanotubes (CNTs) on TiO2 were prepared by a modified sol-gel method and characterized by nitrogen adsorption, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis. The photocatalytic decomposition of rhodamine B (Rh.B) under UV irradiation and air aeration catalyzed by the composites was measured. The photocatalytic activity of TiO2 nanoparticles was significantly enhanced by the large CNT network that facilitated electron transfer between adsorbed Rh.B molecules and the catalyst substrate and the simultaneous occurrence of the photo-Fenton reaction in the presence of Fe particles. A marked acceleration of the decomposition rate was observed with aeration by flowing air aeration due to the formation of the circulatory photo-Fenton system. Chemical oxygen demand of piggery waste was measured at regular intervals to evaluate the mineralization of wastewater.  相似文献   

18.
A microwave-assisted sol-gel method was employed for the preparetion of nano-sized MgO particles using Mg(NO 3)2·6H2O as precursor and deionized water as solvent.The sample calcined at 500℃ had a high specific surface area of 243.2m2/g and particles sizes from 9.5to10.5nm.For comparison,MgO nanoparticles were also synthesized without microwave irradiation.X-ray diffraction (XRD) characterization showed the formation of smaller particles after microwave irradiation.The structure and morphology of the MgO particles were analyzed by N2 adsorption-desorption,XRD,scanning electron microscopy,and transmission electron microscopy.Their catalytic behavior was studied with the one-pot synthesis of Hantzsch1,4-dihydropyridines from the reaction of aromatic aldehydes,ethyl acetoacetate,and ammonium acetate.The MgO nanoparticles have high catalytic activity and gave the desired products in good to high yields.The catalyst can be easily recovered by filtration and was used at least three times with only a slight reduction in its catalytic activity.  相似文献   

19.
PbO_2/Co_3O_4 composites were prepared on a Ti substrate by means of a composite electrodeposition method in Pb~(2+) plating solution containing dissolved nano-Co_3O_4 particles. X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and transmission electron microscopy(TEM) were used to characterize the chemical composition and morphology of the PbO_2/Co_3O_4 composites. The electrochemical and capacitance performance of the composites were investigated by cyclic voltammetry(CV), charge-discharge tests and electrochemical impedance(EIS). The results indicate that the composites comprise rutile phase Co_3O_4 and β-PbO_2. In addition, the surface of the composite electrode is rough and porous. The PbO_2/Co_3O_4 composites exhibit a high specific capacitance up to 215 F/g, which is ten times higher than that of the pure-PbO_2 and two times higher than that of the pure-Co_3O_4 in 1 mol/L NaOH electrolytes.  相似文献   

20.
Fe_3O_4/Polystyrene(PSt) magnetic particles with core/shell structure have been prepared in thepresence of Fe_3O_4 magnetic fluid in ethanol/water medium by dispersion polymeriation of styrene. A Fe_3O_4particle formation mechanism was proposed. According to this mechanism, the size of particle nuclei isdetermined by the extent of aggregation of Fe_3O_4 /oligomer. Magnetic particles with diameter ranging from 5to 200 μm were prepared under different reaction conditions. Some polymerization parameters such as theconcentration of monomer, stabilizer, initiator, and ethanol which affect particle size and size distribution arediscussed and their effect on particle formation are explained by the proposed mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号