首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium and potassium complexes with 4′-(4‴-benzo-15-crown-5)methyloxy-2,2′:6′,2″-terpyridine (L1) and 4′-(4′-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L2) and heteronuclear Na, K, Ca, and transition metal complexes with L1 were synthesized. The structure of the complexes was proposed on the basis of elemental analysis data, IR spectra, and the results of earlier X-ray diffraction studies of L2, [NaL1NCS], and [Na2{Cu(L1)2}(NCS)3]NCS · CH3CN.  相似文献   

2.

Abstract  

Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials.  相似文献   

3.
The synthesis and photophysical properties of several 6,6″ symmetrically substituted 4′-aryl-2,2′:6′,2″-terpyridine derivatives are reported herein. The UV-Vis spectra in acetonitrile as well as in dichloromethane show two intense bands in the UV areas 252–262 nm and 275–290 nm while the fluorescence emission spectra are only slightly influenced by chemical derivatization.  相似文献   

4.
Complexes of Co(II), Ni(II), Zn(II), and Cu(II) perchlorates and hexafluorophosphates with 4′-(4″-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L) [M(L)2](ClO4)2 · 3H2O and [M(L)2](PF6)2 · 2H2O were synthesized. The spectral criteria of ligand coordination through the terpyridine nitrogen atoms were established. An assumption concerning the benzo-15-crown-5 conformation in the ligand molecule in the synthesized complexes was made. The extraction and ion-selective properties of L were studied.  相似文献   

5.
The homoleptic compound Ru(II)(L)2 where L = 4′-carboxylato-2,2′:6′,2″-terpyridine was employed as a bridge to link two [Mo2(O2CBu t )3]+ units in the formation of the title complex: [Mo2(O2CBu t )3]2-μ-Ru(II)L2] (2+) [BF4]2, which has been characterized by 1H-NMR, UV–vis and emission spectroscopy, MALDI-TOF-MS and cyclic voltammetry. The electronic structure of the complex has been investigated by density functional theory employing Turbomole on the model complex cation [Mo2(O2CH)3]2-μ-(Ru(II)L2)2+. The intense blue color of the cation arises from M2 δ to bridge/terpyridine charge transfer. This paper is dedicated to Prof. F. A. Cotton in memoriam.  相似文献   

6.
Abstract  Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials. Graphical Abstract  
Shinya HayamiEmail:
  相似文献   

7.
Two polyamine copper(II) complexes were synthesized by the reaction between N,N,N′,N′-tetrakis(2′-aminoethyl)propane-1,2-diamine hexahydrochloride and copper(II) perchlorate under almost the same conditions except for reaction temperature. The crystal structures of two complexes were determined by X-ray diffraction techniques, which shows that one of the complexes is unexpected and is a double chlorine or chloride-bridged dinuclear copper(II) complex formed by two diethylenetriamines, and another is a pentadentate mononuclear copper(II) complex composed of homo-protonated N,N,N′,N′-tetrakis(2′-aminoethyl)propane-1,2-diamine. The mechanism of the reaction leading to form the unexpected complex was discussed. The UV-visible spectra and cyclic voltammogram of the complexes were measured.  相似文献   

8.
The complex formation of Cd(II) with N-donor ligands in dimethylsulfoxide (DMSO) is investigated by means of potentiometry and titration calorimetry. The ligands considered in this work are tripodal polyamines and polypyridines: 2,2′,2″-triaminotriethylamine (TREN), tris(2-(methylamino)ethyl)amine (Me3TREN), tris(2-(dimethylamino)ethyl)amine (Me6TREN), tris[(2-pyridyl)methyl]amine (TPA) and 6,6′-bis-[bis-(2-pyridylmethyl)aminomethyl]-2,2′-bipyridine (BTPA). These ligands are characterized by a systematic modification of the donor groups to relate their structure to the thermodynamics of the complexes formed. The TREN and Me3TREN ligands form highly stable species. The stability of the complex formed with the fully methylated Me6TREN is much lower than with other polyamines and the enthalpic and entropic terms suggest an incomplete coordination to the metal ion. In general, the TPA ligand forms complexes less stable than TREN and Me3TREN as a result of the combination of higher structural rigidity of TPA and lower basicity of pyridine moiety with respect to primary and secondary amines. Pyridine-containing ligands display, in general, a less unfavorable formation entropy than tripodal polyamines here considered. In particular, TPA forms a more stable 1:1 species with respect to Me6TREN due to the entropic term, being the enthalpy less negative. The ligand BTPA is able to form only a monometallic complex, where the metal ion is likely to be encapsulated as indicated by the obtained thermodynamic parameters.  相似文献   

9.
Summary The formation of copper(II) ternary complexes [Cu(tpy)(L)] (tpy = 2,2,2-terpyridine; L = oxydiacetate, thiodiacetate, iminodiacetate or dipicolinate) has been studied by potentiometric measurements in aqueous solution at 25° and I = 0.1 mol dm–3 (NaNO3 or NaClO4). All the systems investigated also form protonated species of the [Cu(tpy)(L)H]+ type. The effect of the different heteroatoms (donor atoms) in the ligands L (i.e. O, S or N), other than oxygens of the carboxylic groups, on the stability of the mixed complexes has been evaluated and compared with the trends observed for the analogous complexes of copper(II) with 2,2-bipyridine (bpy).The stabilization of ternary complexes of copper(II) with respect to the different coordination levels is also discussed.  相似文献   

10.
The absorption spectra in dilute dichloromethane solution at 300 K of four Oligotiophenes (OT), namely 2,2′:5′,2″-Terthiophene, 2,2′:5′,2″:5″,2″′-Quaterthiophene, 4,4″′-Didodecyl-2,2′:5′,2″:5″,2″′-quaterthiophene and 5,5′′′′′-Dihexyl-2,2′:5′,2′′:5′′,2′′′:5′′′,2′′′′:5′′′′,2′′′′′-sexithiophene, have been studied both experimentally and theoretically by using a combination of molecular dynamics simulations, time-dependent density functional theory (TD-DFT) and perturbed matrix method calculations. A deep analysis of the theoretical results, affected by a systematic although not dramatic underestimation of the absorption maxima due to the well-documented TD-DFT limitations, clearly indicates that both the environmental (solvent) and thermal effects significantly alter the Oligotiophenes photophysical properties mainly because of the wide repertoire of the S0–S1 energy gaps and electronic densities experienced in solution by the different conformers actually populated. In particular, all the investigated OT display a very high flexibility resulting in a very high repertoire of sampled conformations. The comparison of the calculated and experimental lineshape of the S0–S1 electronic transition has clearly indicated that for a correct modeling of OT spectral features, the lack of an exhaustive sampling of semiclassical configurational space of the overall system, i.e., solute in interaction with the solvent, might result in an incomplete picture even in the presence of well-documented important aspects such as reliable definition of excited electronic states and the inclusion of quantum vibronic effects.  相似文献   

11.
Co(II), Ni(II), Cu(II) and Cd(II) chelates with 1-aminoethylidenediphosphonic acid (AEDP, H4L1), α-amino benzylidene diphosphonic acid (ABDP, H4L2), 1-amino-2-carboxyethane-1,1-diphosphonic acid (ACEDP, H5L3), 1,3-diaminopropane-1,1,3,3-tetraphosphonicacid (DAPTP, H8L4), ethylenediamine-N,N′-bis(dimethylmethylene phosphonic)acid (EDBDMPO, H4L5), O-phenylenediamine-N,N′-bis(dimethyl methylene phosphonic)acid (PDBDMPO, H4L6), diethylene triamine-N,N,N′,N′,NN″-penta(methylene phosphonic)acid (DETAPMPO, H10L7) and diethylene triamine-N,N″-bis(dimethyl methylene phosphonic)acid (DETBDMPO, H4L8) have been synthesised and were characterised by elemental and thermal analyses as well as by IR, UV–VIS, EPR and magnetic measurements. The first stage in the thermal decomposition process of these complexes shows the presence of water of hydration, the second denotes the removal of the coordinated water molecules. After the loss of water molecules, the organic part starts decomposing. The final decomposition product has been found to be the respective MO·P2O5. The data of the investigated complexes suggest octahedral geometry with respect to Co(II) and Ni(II) and tetragonally distorted octahedral geometry with respect to Cu(II). Antiferromagnetism has been inferred from magnetic moment data. Infrared spectral studies have been carried out to determine coordination sites.  相似文献   

12.
Condensation of 2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-carbaldehyde with naphthalen-1-amine and cyclohexane-1,3-dione, methyl 2,2-dimethyl-4,6-dioxocyclohexane-1-carboxylate, or dimedone gave the corresponding 7-(2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-yl)-7,8,9,10,11,12-hexahydro-12H-benzo[c]acridin-8-ones. The reaction of 2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-carbaldehyde with naphthalen-1-amine and indan-1,3-dione produced 7-(2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-yl)-8H-benzo[h]indeno[1,2-b]quinolin-8-one. 7-(2′-Hydroxy-1,1′: 3′,1″-terphenyl-5′-yl)-7,8,9,10,11,12-hexahydrobenzo[b][1,10]phenanthrolin-8-ones were obtained by three-component condensation of 2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-carbaldehyde with quinolin-8-amine and cyclohexane-1,3-dione, methyl 2,2-dimethyl-4,6-dioxocyclohexane-1-carboxylate, or dimedone.  相似文献   

13.
Heteroligand complexes of copper(II) were obtained as a result of the reaction of Cu(II) mono (o-hydroxybenzoate) (monohydrate) with 8-hydroxyquinoline (HOx), o-aminophenol (NH2Ph) and 2,2′-dipyridyl (2,2′-dipy). The mixture of the mono compound with: Cu(II) di(o-aminobenzoate) or Cu(II) di(o-hydroxybenzaldoximate) were obtained by the reaction with o-aminobenzoic acid (H2A) and o-hydroxybenzaldoxime (H2Salox). The obtained compounds and their sinters were subjected to chemical, X-ray and thermal analyses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Two approaches to the formation of ruthenium(II) complexes containing ligands with conjugated 2,2′:6′,2″-terpyridine (tpy), alkynyl and bithienyl units have been investigated. Bromination of 4′-(2,2′-bithien-5′-yl)-2,2′:6′,2″-terpyridine leads to 4′-(5-bromo-2,2’-bithien-5′-yl)-2,2′:6′,2″-terpyridine (1), the single crystal structure of which has been determined. The complexes [Ru(1)2][PF6]2 and [Ru(tpy)(1)][PF6]2 have been prepared and characterized. Sonogashira coupling of the bromo-substituent with (TIPS)CCH did not prove to be an efficient method of preparing the corresponding complexes with pendant alkynyl units. The reaction of 4′-ethynyl-2,2′:6’,2″-terpyridine with 5-bromo-2,2′-bithiophene under Sonogashira conditions yielded ligand 2, and the heteroleptic ruthenium(II) complex [Ru(2)(tpy)][PF6]2 has been prepared and characterized.  相似文献   

15.
The synthesis and characterization of two tritopic ligands containing a 2,2′:6′,2″-terpyridine (tpy) metal binding domain and either a 3,2′:6′,3″- or a 4,2′:6′,4″-tpy domain are detailed. The synthetic routes to these ligands involved the [Pd(dppf)Cl2]-catalyzed coupling of a boronic ester-functionalized 2,2′:6′,2″-tpy with bromo-derivatives of 3,2′:6′,3″-tpy or 4,2′:6′,4″-tpy. The 2,2′:6′,2″-tpy domains of the tritopic ligands preferentially bind Fe2+ in reactions with iron(II) salts leading to the formation of two homoleptic iron(II) complexes containing two peripheral 3,2′:6′,3″-tpy or 4,2′:6′,4″-tpy metal-binding sites, respectively. These iron(II) complexes are potentially tetratopic ligands and represent expanded versions of tetra(pyridin-4-yl)pyrazine.  相似文献   

16.
A ‘synthesis-at-metal’ approach is described for the preparation of extended ethynylnaphthalene-based ruthenium(II) 2,2′:6′,2″-terpyridine complexes.  相似文献   

17.
Summary Mixed-ligand complex formation of copper(I) with 2,2,2-terpyridine (terpy) and various biologically significant sulfurcontaining amino acids, L [L = cysteine, penicillamine,N-acetylcysteine andN-acetylpenicillamine] was investigated. WithN-acetylcysteine andN-acetylpenicillamine, copper(I) complexes [Cu(terpy)L]HCl have been isolated and characterised. The amino acid in each case bonds to the copper(I) through the sulfur atom only. These complexes are readily oxidised to the corresponding copper(II) complexes which contain a CuII-S(mercaptide) bond as demonstrated by the (S)CuII LMCT at 420 nm. The e.p.r. and electronic spectroscopic results are consistent with a distorted octahedral structure. Reactions of copper(I) with terpy and cysteine/ penicillamine in weakly acidic medium produce complexes containing two different copper(II) centres. From a strongly acidic medium, a binary copper(I) terpyridine complex is obtained instead and is shown from i.r. spectral absorptions to contain a protonated pyridyl ring.  相似文献   

18.
The use of divergent 4,2′:6′,4″- and 3,2′:6′,3″-terpyridine ligands as linkers and/or nodes in extended coordination assemblies has gained in popularity over the last decade. However, there is also a range of coordination polymers which feature 2,2′:6′,2″-terpyridine metal-binding domains. Of the remaining 45 isomers of terpyridine, few have been utilized in extended coordination arrays. Here, we provide an overview of coordination polymers and networks containing isomers of terpyridine and either zinc(II) and cadmium(II). Although the motivation for investigations of many of these systems is their luminescent behavior, we have chosen to focus mainly on structural details, and we assess to what extent assemblies are reproducible. We also consider cases where there is structural evidence for competitive product formation. A point that emerges is the lack of systematic investigations.  相似文献   

19.
The present paper describes the synthesis and characterization of novel metal (II) 3,3′,3″,3‴-tetramethoxyphenylimino substituted phthalocyanines (M-MeOPhImPcs) of copper (II), cobalt (II), nickel (II) and zinc (II) by condensing the 3,3′,3″,3″′-tetra amino phthalocyanines with anisaldehyde. The dark bluish green colored tetraimino substituted phthalocyanine derivatives were characterized by various physico-chemical techniques like elemental analysis, magnetic susceptibility, electronic, IR, powder X-ray diffraction and thermo gravimetric analysis (TGA) to check the structural integrity and purity. The variations of magnetic moment as a function of field strength indicated the presence of inter molecular co-operative interactions. The complexes were also evaluated for their antifungal and antibacterial activities. This article was submitted by the authors in English.  相似文献   

20.
New square-planar bis(macrocyclic)dicopper(II) complexes containing phenylene bridges between 16-membered pentaaza macrocyclic subunits have been synthesized via in-situ one pot template condensation reaction (IOPTCR) of aromatic nitrogen-nitrogen linker (R = 1,4-phenylenediamine; benzidine; 4,4′-diaminodiphenylmethane; 4,4′-diaminodiphenylether; 4,4′-diaminodiphenylsulfone), formaldehyde, bis(1,3-diaminopropane)copper(II) perchlorate and 1,3-dibromopropane in a 1:4:2:2 molar ratio results in the formation of new series of binuclear copper(II) complexes; 1-phenyl- (1); 1,1′-phenyl- (2); 1,1′-diphenylmethan- (3); 1,1′-diphenylether- (4); 1,1′-diphenylsulfone- (5) bis(1,3,7,11,15-pentaazacyclohexadecane)copper(II)), {[Cu([16]aneN5)]2R}(ClO4)4″. The formation of the macrocyclic framework and the mode of bonding of the complexes have been confirmed by data obtained from elemental analyses, UV-visible, FT-IR, 1H-NMR, electronic spectral studies, conductivity and magnetic susceptibility measurements. These bis(macrocyclic) complexes catalyzed efficiently the selective oxidation of tetrahydrofuran into tetrahydrofuran-2-one and a small amount of tetrahydrofuran-2-ol and 4-hydroxybutyraldehyde using dil. H2O2 as the oxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号