首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser induced breakdown spectroscopy (LIBS) coupled with a laser ablation time of flight mass spectrometer (LA-TOF-MS) has been developed for discrimination/analysis of the precious gold alloys cartage. Five gold alloys of Karats 18K, 19K, 20K, 22K and 24K having certified composition of gold as 75, 79, 85, 93 and 99.99% were tested and their precise elemental compositions were determined using the laser produced plasma technique. The plasma was generated by focusing beam of a Nd:YAG laser on the target in air and its time integrated emission spectra were registered in the range 250–870 nm. The calibration free LIBS technique (CF-LIBS) was used for the quantitative determination of the constituent elements present in different Karats of gold. Elemental compositions of these gold alloys were also determined using a Laser Ablation time of flight mass spectrometer (LA-TOF-MS). The LIBS limit of detection was calculated from the calibration curves for copper, silver and gold. Results of CF-LIBS and LA-TOF-MS are in excellent agreement with the certified values. It is demonstrated that LIBS coupled with LA-TOF-MS is an efficient technique that can be used to analyze any precious alloys in a fraction of a second.  相似文献   

2.
Laser induced breakdown spectroscopy (LIBS) is an emerging technique for fast and accurate compositional analysis of many different materials. We present a systematic study of collinear double-pulse LIBS on different technical polymers such as polyamide, polyvinyl chloride, polyethylene etc. Polymer samples were ablated in air by single-pulse and double-pulse Nd:YAG laser radiation (8 ns pulse duration) and spectra were recorded with an Echelle spectrometer equipped with an ICCD camera. We investigated the evolution of atomic and ionic line emission intensities for different delay times between the laser pulses (from 20 ns to 500 μs) at a laser wavelength of 532 nm. We observed double-pulse LIBS signals that were enhanced as compared to single-pulse measurements depending on the delay time and the type of polymer material investigated. LIBS signals of polymer materials that are enhanced by double-pulse excitation may be useful for monitoring the concentration of heavy metals in polymer materials.  相似文献   

3.
A large suite of natural carbonate, fluorite and silicate geological materials was studied using laser-induced breakdown spectroscopy (LIBS). Both single- and double-pulse LIBS spectra were acquired using close-contact benchtop and standoff (25 m) LIBS systems. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to identify the distinguishing characteristics of the geological samples and to classify the materials. Excellent discrimination was achieved with all sample types using PLS-DA and several techniques for improving sample classification were identified. The laboratory double-pulse LIBS system did not provide any advantage for sample classification over the single-pulse LIBS system, except in the case of the soil samples. The standoff LIBS system provided comparable results to the laboratory systems. This work also demonstrates how PCA can be used to identify spectral differences between similar sample types based on minor impurities.  相似文献   

4.
A comparison between single- and double-pulse LIBS for the quantitative elemental analysis of used engine oils has been performed. Paper substrates have been utilised for the analysis and are shown to provide better limits of detection (LODs), no splashing and easier sample handling compared to the previously reported experiments using laminar liquid jets and static liquid surfaces. Single-pulse LIBS analysis of oil on paper substrates has had on average 2× better LODs than was obtained using flowing liquid jets, while double-pulse LIBS showed 4× improvement. Single-pulse LIBS has been found preferable for the analysis, as the use of an additional laser in double-pulse LIBS yielded only a minor improvement while adding substantially to the complexity and cost of the system.  相似文献   

5.
Actual state of affairs, main advantages and problems of Laser-Induced Breakdown Spectroscopy (LIBS) in analysis of industrial materials and environmental samples are discussed. Methods for LIBS sensitivity enhancement such as double-pulse ablation, a combination of LIBS with laser-induced fluorescence, the use of additional sources of excitation (spark) and confinement of plasma by magnetic field or shock wave are compared with respect to figures-of-merit. A set of LIBS approach to qualitative fast classification of materials, especially based on the correlation between parameters of laser plasma and sample properties, are discussed in details. Progress in environmental analysis of soils, sands etc. with the use of LIBS is demonstrated. Detection limits of the most elements in soils and aluminum alloys obtained until now are critically considered.  相似文献   

6.
In the present work we are studying the influence of pulse duration (nanosecond (ns) and femtosecond (fs)) at λ = 248 nm on the laser-induced plasma parameters and the quantitative analysis results for elements such as Sn, Zn and Pb, in different types of bronze alloys adopting LIBS in ambient atmosphere. Binary (Sn–Cu), ternary (Sn–Zn–Cu or Sn–Pb–Cu) and quaternary (Sn–Zn–Pb–Cu) reference alloys characterized by a chemical composition and metallurgical features similar to those used in Roman times, were employed in the study. Calibration curves, featuring linear regression coefficients over 98%, were obtained for tin, lead and zinc, the minor elements in the bronze alloys (using the internal standardization method) as well as for copper, the major element. The effects of laser pulse duration and energy on laser-induced plasma parameters, namely the excitation temperature and the electron density have been studied in our effort to optimize the analysis. Finally, LIBS analysis was carried on three real metal objects and the spectra obtained have been used to estimate the type and elemental composition of the alloys based on the calibration curves produced with the reference alloys. The results obtained are very useful in the future use of portable LIBS systems for in situ qualitative and quantitative elemental analysis of bronze artifacts in museums and archaeological sites.  相似文献   

7.
Laser induced breakdown spectroscopy (LIBS) was performed on the CMSX-4 Ni-based superalloy using a femtosecond pulsed laser. An orthogonal double-pulse technique was used to minimize surface damage associated with LIBS. With this technique, the depth of ablation craters was reduced from 200 nm for single-pulse LIBS down to less than 60 nm using orthogonal double-pulse LIBS. The technique also allowed the average velocity of the ablated material to be determined, which ranged from 4720 ± 560 m/s at a pump laser fluence of 3.1 J/cm2 to 8150 ±1800 m/s at 10.1 J/cm2.  相似文献   

8.
Investigation of the chemical composition, surface structure, metallurgical features, corrosion mechanism, and surface modification techniques of archeological metallic artifacts from Romans and pre‐Roman times aimed to simulate the most commonly used Cu‐based and Ag‐based alloys. These simulated reference alloys will be used as sacrificial materials to study the most appropriate conservation materials and procedures. In the present work, laser‐induced breakdown spectroscopy (LIBS) is introduced as a new validated surface mapping technique to study the micro‐chemical distribution of elements in binary reference copper–silver alloy samples. Using different techniques for surface and bulk analysis, such as SEM coupled with energy‐dispersive X‐ray spectroscopy and X‐ray diffraction, it has been proven that LIBS is a simple, sensitive, and direct technique in the determination of heterogeneity of the sample's surface. By changing the laser wavelength (λ/nm) and focal length of the used focusing lens (f/cm), different spot sizes can be obtained. It was possible to control the spatial resolution in mapping the investigated samples' surface and to achieve local chemical information. In the present work, Q‐switched neodymium‐doped yttrium aluminum garnet laser has been used at its fundamental wavelength 1064 nm and its second harmonic 532 nm. The studied samples were specially manufactured heterogeneous copper–silver alloys with known grain size as studied via SEM investigation. The obtained LIBS results are in good agreement with those by other analytical techniques and extend the applicability of the surface techniques to study metallic ancient objects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The characterization of laser-induced plasma from a glass sample was performed in the single- and double-pulse excitation regimes. The detailed information about density distributions of excited atoms and ions in the expanding plasma was obtained by using the imaging detection system providing measurements of the spatial, temporal, and spectral plasma emission characteristics. The expansion dynamics was shown to differ strongly between two excitation regimes. The enhancement factors of the line emissions in the double-pulse mode were found to be spatial dependent and to differ for the different elements in the plasma plume. The obtained results are useful for a better understanding of the main physical processes leading to the analytical improvement achieved by the use of double-pulse laser-induced breakdown spectroscopy (LIBS).  相似文献   

10.
The aim of this paper is offering a critical review of Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS), the approach of multi-elemental quantitative analysis of LIBS spectra, based on the measurement of line intensities and plasma properties (plasma electron density and temperature) and on the assumption of a Boltzmann population of excited levels, which does not require the use of calibration curves or matrix-matched standards. The first part of this review focuses on the applications of the CF-LIBS method. Quantitative results reported in the literature, obtained in the analysis of various materials and in a wide range of experimental conditions, are summarized, with a special emphasis on the departure from nominal composition values. The second part is a discussion of the simplifying assumptions which lie at the basis of the CF-LIBS algorithm (stoichiometric ablation and complete atomization, thermal equilibrium, homogeneous plasma, thin radiation, detection of all elements). The inspection of the literature suggests that the CF-LIBS method is more accurate in analyzing metallic alloys rather than dielectrics. However, the full exploitation of the method seems to be still far to come, especially for the lack of a complete characterization of the effects of experimental constraints. However, some general directions can be suggested to help the analyst in designing LIBS measurements in a way which is more suited for CF-LIBS analysis.  相似文献   

11.
Double-pulse laser-induced breakdown spectroscopy studies were performed on different types of materials (synthetic glasses, rocks, steels). Two Nd : YAG lasers emitting at 532 nm were combined in the collinear beam geometry to carry out double-pulse experiments at atmospheric pressure in air. For all matrices, the influence of the delay between the two laser pulses was systematically investigated from temporal and spectral analyses. Furthermore, the correlation between the excitation energy levels of the emission lines and the increases in intensity induced by the double-pulse scheme was described for each material. A comparison of the studies displayed different behaviors of the materials in the double-pulse experiments. An interpretation of the results is provided on the basis of the determination of the plasma temperatures in the single- and double-pulse configuration with the Saha–Boltzmann plot method. It also gave an insight into the potentialities and the limitations of the double-pulse laser-induced breakdown spectroscopy (LIBS) for analytical purpose so that the materials can be classified in terms of effectiveness of the double-pulse approach.  相似文献   

12.
This paper is part of a more general study aimed to the determination of the best experimental procedures for reliable quantitative measurements of Fe–Mn alloys by LIBS. In this work, attention is pointed on the self-absorption processes, whose effect deeply influences the LIBS measurements, reflecting in non-linear calibration curves. The effect of self-absorption on the line intensity can be quantified by defining a self-absorption coefficient, that measures the deviation of the line intensity from the linear extrapolation of the curve of growth in the optically thin regime. The authors demonstrated in a previous paper that self-absorption coefficients could be calculated once the electron density of the plasma is known and the Stark coefficients of the lines are available. However, when the Stark coefficients of the lines of interest are not known, a different approach is needed. In this work a new method for evaluation of self-absorption coefficients in LIBS measurements is presented, which does not require the knowledge of Stark coefficients. In order to understand the basic principles and setting out the theoretical tools that will be used for the analysis of the alloys, a preliminary study was done on pure Mn; LIBS spectra were acquired in different experimental conditions, at different laser energies and different delays after the laser irradiation of the sample. Moreover, collinear double pulse measurements were also performed. Analytical relations were derived and experimental procedures devised for evaluation of the self-absorption coefficients of several Mn lines, which are important for characterization and control of the experimental conditions in which the analysis is performed.  相似文献   

13.
Laser-induced breakdown spectroscopy (LIBS) has been performed on immersed solid samples with different grades of surface roughness and material homogeneity and on bulk water solutions. The underwater plasma was produced by applying double-pulse excitation at 1064 nm, with different sets of laser pulse energies. LIBS spectra were recorded separately for each couple of laser pulses in order to monitor shot-to-shot plasma behavior and to apply signal post processing. The latter was aimed at improving the detection limits for elemental analyses. Except in the case of flat homogeneous solid samples at high laser pulse energies, the measurements were affected by strong shot-to-shot signal oscillations. Automatic elimination of low intensity spectra reduced the detection limit up to a factor of seven. The optimum level for spectral filtering depends strongly on sample properties. For bulk water, a poor correlation was observed between the peak line intensities and the plasma continuum emission, making the peak-to-background ratio unsuitable for internal standardization purposes. The analytical performance of LIBS for bulk liquid was also affected by the spatial fluctuations of the breakdown location, a phenomenon known as “moving breakdown” in the literature, which was responsible for the signal depletion in the detection region. In preliminary measurements on water solutions, the detection limit of 0.2 mg/l for magnesium has been obtained after applying data post processing.  相似文献   

14.
Laser Ablation Molecular Isotopic Spectrometry (LAMIS) has been investigated for optical isotopic analysis of the deuterium to protium ratio in enriched water samples in ambient air at atmospheric pressure. Multivariate PLSR (Partial Least Squares Regression) based calibrations were carried out and validated using multiple statistical parameters. Comparisons of results are reported using two spectrometers having two orders of magnitude difference in spectral resolution. The accuracy and precision of isotopic analysis depends on the spectral resolution and the inherent isotope shift of the elements. The requirements for spectral resolution of the measurement system can be significantly relaxed when the isotopic abundance ratio is determined using chemometric processing of the spectra. Large isotopic shifts in the individual rotational branches of OH/OD molecular emission spectra were measured. Optimized temporal conditions for LAMIS measurements were established. Several sub-regions of spectra were used for PLSR calibration and the results demonstrate that both the emission intensity and degree of spectral differentiation affect the quality of the PLSR calibration. LAMIS results also were compared with traditional LIBS results obtained using PLSR and a spectral deconvolution method, demonstrating the advantages of LAMIS over LIBS with respect to isotopic composition determination.  相似文献   

15.
Laser-induced breakdown spectroscopy (LIBS) provides an alternative chemical analytical technique that obviates the issues of sample preparation and sample destruction common to most laboratory-based analytical methods. This contribution explores the capability of LIBS analysis to identify carbonate and silicate minerals rapidly and accurately. Fifty-two mineral samples (18 carbonates, 9 pyroxenes and pyroxenoids, 6 amphiboles, 8 phyllosilicates, and 11 feldspars) were analyzed by LIBS. Two composite broadband spectra (averages of 10 shots each) were calculated for each sample to produce two databases each containing the composite LIBS spectra for the same 52 mineral samples. By using correlation coefficients resulting from the regression of the intensities of pairs of LIBS spectra, all 52 minerals were correctly identified in the database. If the LIBS spectra of each sample were compared to a database containing the other 51 minerals, 65% were identified as a mineral of similar composition from the same mineral family. The remaining minerals were misidentified for two reasons: 1) the mineral had high concentrations of an element not present in the database; and 2) the mineral was identified as a mineral with similar elemental composition from a different family. For instance, the Ca–Mg carbonate dolomite was misidentified as the Ca–Mg silicate diopside. This pilot study suggests that LIBS has promise in mineral identification and in situ analysis of minerals that record geological processes.  相似文献   

16.
In this study a new approach to the online monitoring of the Al depth profile of hot-dip galvanised sheet steel is presented, based on laser-induced breakdown spectroscopy (LIBS). The coating composition is measured by irradiating the traversing sheet steel with a series of single laser bursts, each at a different sheet steel position. An ablation depth in the same range as the coating thickness (about 10 μm) is achieved by applying a Nd:YAG laser at 1064 nm in collinear double-pulse and triple-pulse mode. The ablation depth is controlled by adjusting the burst energy with an external electro-optical attenuator. A fingerprint of the depth profile is gained by measuring the LIBS signals from zinc, aluminium and iron as a function of the burst energy, and by post-processing the data obtained. Up to three depths can be sampled simultaneously with a single laser burst by measuring the LIBS signals after each pulse within the laser burst. A concept for continuously monitoring the Al depth profile during the galvanising process is presented and applied to different hot-dip galvanised coatings. The method was tested on rotating sheet steel disks moving at a speed of up to 1 m/s. The potential and limitations of the new method are discussed.  相似文献   

17.
激光诱导击穿光谱(LIBS)是一种以激光为激发源的等离子体发射光谱分析技术,已有将其用于稀土元素的定量分析研究,但由于稀土矿基体差异大、元素含量低,定量分析灵敏度和准确度仍有待提高。通过使用单激光分束构造双脉冲LIBS系统,并结合偏最小二乘回归(PLSR)算法实现对稀土矿石样品中的稀土元素La、Dy、Yb和Y的定量分析。结果表明,双脉冲LIBS结合PLSR可建立更加稳定的定标模型,与常规基本定标法相比,La、Dy、Yb和Y元素的相对均方根预测误差(RMSEP)从0.0061 %、0.0037%、0.0045%、0.0280 %降低至0.0044%、0.0016%、0.0029%、0.0134%,平均相对预测误差(AREP)从10.88%、15.27%、6.42%、17.20%降低至6.67%、3.62%、4.10%、7.98%。因此,双脉冲LIBS结合PLSR方法可以有效地提高LIBS对稀土矿石中稀土元素的定量分析能力。  相似文献   

18.
Pipeline scales from the Campos Bay Petroleum Field near Rio de Janeiro, Brazil have been analyzed by both Raman spectroscopy and by laser-induced breakdown spectroscopy (LIBS) using a double-pulse, calibration-free approach. Elements that are characteristic of petroleum (e.g. C, H, N, O, Mg, Na, Fe and V) were detected, in addition to the Ca, Al, and Si which form the matrix of the scale. The LIBS results were compared with the results of micro-Raman spectroscopy, which confirmed the nature of the incrustations inferred by the LIBS analysis. Results of this preliminary study suggest that diffusion of pipe material into the pipeline intake column plays an important role in the growth of scale. Thanks to the simplicity and relative low cost of equipment and to the fact that no special chemical pre-treatment of the samples is needed, LIBS can offer very fast acquisition of data and the possibility of in situ measurements. LIBS could thus represent an alternative or complementary method for the chemical characterization of the scales by comparison to conventional analytical techniques, such as X-ray diffraction or X-ray fluorescence.  相似文献   

19.
Classification of suspect powders, by using laser‐induced breakdown spectroscopy (LIBS) spectra, to determine if they could contain Bacillus anthracis spores is difficult because of the variability in their composition and the variability typically associated with LIBS analysis. A method that builds a support vector machine classification model for such spectra relying on the known elemental composition of the Bacillus spores was developed. A wavelet transformation was incorporated in this method to allow for possible thresholding or standardization, then a linear model technique using the known elemental structure of the spores was incorporated for dimension reduction, and a support vector machine approach was employed for the final classification of the substance. The method was applied to real data produced from an LIBS device. Several methods used to test the predictive performance of the classification model revealed promising results. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

20.
因高温、辐射等极端环境限制,核领域亟需具备在线快速检测特性的分析仪器。基于小型风冷脉冲激光器与小型光纤光谱仪实现了远程激光诱导击穿光谱技术(LIBS)装置的小型化,对该便携式远程LIBS系统的定量分析性能进行了研究,实现了5 m外样品的元素遥测。在单脉冲激光能量100 mJ,脉冲延时1.0 μs的分析条件下,实现了白水晶、陶瓷及铝合金样品中Mn、Si、Al、Na、Ba、Ca及Cr元素的激发,验证了LIBS技术对材料组分和物料成分的远程探测能力,对铝合金样品的定量分析结果显示,该远程遥测系统对铝合金样品定量测量结果的最大相对平均偏差为12%,具备执行核领域快速分析场景下的半定量检测能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号