首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
de Matos CJ  Popov SV  Taylor JR 《Optics letters》2003,28(20):1891-1893
The use of Raman gain in conventional fiber followed by dispersion compensation in a holey fiber in a synchronously pumped laser configuration allowed compression by a factor of 8.5 of output pulses at a selected wavelength with respect to the pump pulses. We obtained 2-ps output pulses at 1.14 microm from a totally fiber-integrated laser pumped with 17-ps pulses at 1 microm. Higher pulse compression should be possible with nonlinear chirp compensation. Ultrashort-pulse, all-fiber Raman lasers at wavelengths shorter than 1.3 microm are feasible.  相似文献   

2.
High-power diode-cladding-pumped Tm-doped silica fiber laser   总被引:6,自引:0,他引:6  
Jackson SD  King T 《Optics letters》1998,23(18):1462-1464
The operation of a diode-pumped Tm-doped silica fiber laser that uses the cladding-pumping arrangement to produce high-power cw output at wavelengths near 2 microm is reported. We obtained a maximum output power of 5.4 W at a slope efficiency of 31% with respect to the launched pump power at a total optical-to-optical efficiency of 22%. The fiber-laser output wavelength was tuned between 1.880 and 2.033 microm by adjustment of the fiber length, with >4W of power obtainable from 1.94 to 2.01 microm. Self-pulsations detected in the output from the double-clad fiber laser may indicate the presence of ion-clustering effects.  相似文献   

3.
Fu L  Gan X  Gu M 《Optics letters》2005,30(4):385-387
We present a compact second-harmonic-generation (SHG) microscope based on a three-port single-mode fiber coupler. The fiber coupler is used to deliver a near-infrared ultrashort-pulsed laser beam as well as to collect the SHG signal in the visible wavelength range. The SHG microscope exhibits an axial resolution of 1.8 microm, which shows a slight enhancement of the optical sectioning effect compared with that for two-photon excitation at the same excitation wavelength. It is also demonstrated that SHG and two-photon fluorescence images under parallel and perpendicular laser excitation polarization can be simultaneously obtained.  相似文献   

4.
We present a mode-locked ytterbium fiber laser with a higher-order mode fiber compensating the group-velocity dispersion and partially the third-order dispersion of the single-mode fiber at a wavelength of 1 microm. The generated pulses had an energy of 0.5 nJ and could be dechirped externally to a pulse duration of less than 60 fs. The power spectrum shows a spectral full width at half-maximum of 57 nm.  相似文献   

5.
Himei Y  Qiu J  Nakajima S  Sakamoto A  Hirao K 《Optics letters》2004,29(23):2728-2730
Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.  相似文献   

6.
We have demonstrated what we believe to be the first mid-infrared optical parametric oscillator (OPO) pumped directly by a pulsed Tm-doped fiber laser. The Tm-fiber pump laser produces 30 ns pulses with a repetition rate of 30 kHz at a wavelength of 2 microm. The ZnGeP2 (ZGP) OPO produces 20 ns mid-IR pulses in the 3.4-3.9 microm and 4.1-4.7 microm spectral regions simultaneously. More than 658 mW of mid-IR output power has been generated with a total OPO slope efficiency greater than 35%.  相似文献   

7.
Kudlinski A  Mussot A 《Optics letters》2008,33(20):2407-2409
We report the experimental demonstration of a visible supercontinuum in the cw pumping regime. A 20 W ytterbium fiber laser at 1.06 microm is used to pump a photonic crystal fiber whose zero-dispersion wavelength decreases along the fiber length. Visible wavelengths are generated in the fundamental mode via trapping of dispersive waves by redshifted solitons.  相似文献   

8.
We report over 2 W of single spatial-mode output power at 1.5 microm from an 8-cm-long, large-core phosphate fiber laser. The fiber has a numerical aperture of approximately equal to 0.17 and a 25-microm-wide core, heavily doped with 1% Er(+3) and 8% Yb(+3). The laser utilizes a scalable evanescent-field-based pumping scheme and can be pumped by as many as eight individual multimode pigtailed diode laser sources at a wavelength of 975 nm. Nearly diffraction-limited laser output with a beam quality factor M2 approximately equal to 1.1 is achieved by use of a simple intracavity all-fiber spatial-mode filter. Both spectrally broadband and narrowband operation of the laser are demonstrated.  相似文献   

9.
A peak output power of greater than 4.1 kW and a pulse duration at FWHM of 150 ns have been obtained in a Q-switched Tm3+-doped silica fiber laser in the wavelength region near 2 microm when the laser was pumped with a Nd:YAG laser operating at 1.319 microm. An acousto-optic modulator was used as a Q-switching element and operated at repetition rates of as much as 30 kHz. A core diameter of 17 microm was used to increase the laser gain volume, permitting high-pump-power absorption and an output of high pulse energy and peak power. Stimulated Brillouin scattering was directly observed in the output pulse, and as much as 10 orders of stimulated Brillouin scattering was recorded. This is the first report to the authors' knowledge of high-peak-power operation of a Tm3+-fiber laser.  相似文献   

10.
Fiber-coupled microsphere laser   总被引:3,自引:0,他引:3  
Cai M  Painter O  Vahala KJ  Sercel PC 《Optics letters》2000,25(19):1430-1432
We demonstrate a 1.5-microm - wavelength fiber laser formed by placement of glass microsphere resonators along a fiber taper. The fiber taper serves the dual purpose of transporting optical pump power into the spheres and extracting the resulting laser emission. A highly doped erbium:ytterbium phosphate glass was used to form microsphere resonant cavities with large gain at 1.5microm . Laser threshold pump powers of 60muW and fiber-coupled output powers as high as 3 muW with single-mode operation were obtained. A bisphere laser system consisting of two microspheres attached to a single fiber taper is also demonstrated.  相似文献   

11.
Phase-matched parametric four-wave mixing in higher-order guided modes of a photonic crystal fiber is shown to result in an efficient decay of 40-fs 800-nm Ti:sapphire laser pump pulses into an anti-Stokes signal with a central wavelength around 590-600 nm and a Stokes signal centered at 1.25 microm. The photonic crystal fiber is designed in such a way as to minimize the group-velocity dispersion at the pump wavelength, phase match the parametric four-wave-mixing process, and reduce the group delay between the pump and the anti-Stokes pulses. The duration of the anti-Stokes pulse under these conditions, as shown by cross-correlation frequency-resolved optical gating measurements, is less than 200 fs.  相似文献   

12.
We demonstrate an ytterbium gain band self-induced modulation instability laser. A highly nonlinear holey fiber is used to provide the anomalous dispersion required for bright soliton generation at 1 microm. The all-fiber integrated source yields a 40 GHz train of 4 ps pulses at a wavelength of 1064 nm.  相似文献   

13.
Di Teodoro F  Brooks CD 《Optics letters》2005,30(24):3299-3301
A Q-switched microchip laser generating 1064 nm wavelength, subnanosecond pulses at a 13.4 kHz repetition rate was used to seed a dual-stage amplifier featuring a 40 microm core Yb-doped photonic-crystal fiber (PCF) as the power amplifier. From this source, we obtained diffraction-limited (M2 = 1.05), approximately 450 ps pulses of energy > 0.7 mJ, peak power in excess of 1.5 MW, and an average power of approximately 9.5 W. By further amplifying the PCF output in a multimode 140 microm core Yb-doped fiber, we generated a peak power in excess of 4.5 MW, the highest obtained in a fiber source to our knowledge.  相似文献   

14.
We report on a mid-infrared (mid-IR) source consisting of an approximately 10 W average-power, linearly polarized 1.54 microm wavelength pulsed fiber source pumping an optical parametric oscillator. From this source, we obtained average power in excess of 1 W in the 3.8-4.0 microm wavelength range at a pulse repetition frequency of 100 kHz. With a slightly different setup, we also achieved an average power of 0.25 W at 4.5 microm wavelength. To our knowledge, these values represent the highest mid-IR power obtained through wavelength conversion of an eye-safe fiber source.  相似文献   

15.
We report the first realization of a guided quasicontinuous atom laser by rf outcoupling a Bose-Einstein condensate from a hybrid optomagnetic trap into a horizontal atomic waveguide. This configuration allows us to cancel the acceleration due to gravity and keep the de Broglie wavelength constant at 0.5 microm during 0.1 s of propagation. We also show that our configuration, equivalent to pigtailing an optical fiber to a (photon) semiconductor laser, ensures an intrinsically good transverse mode matching.  相似文献   

16.
A short-pulse, two-color Yb:fiber laser system has been developed for mid-infrared generation. To date, 20 microW of average power at a wavelength of approximately 18 microm is generated by difference-frequency mixing 300 mW average power from the two-color Yb:fiber amplifier. The mid-infrared power was not limited by two-photon absorption, allowing it to be scaled by increasing the amplifier power.  相似文献   

17.
All-optical switching in long-period fiber gratings   总被引:4,自引:0,他引:4  
Nonlinear pulse propagation in long-period fiber gratings is studied with a mode-locked Q -switched laser pulse approximately 80ps in duration at a wavelength of 1.05 microm . Optical switching, pulse reshaping, and optical limiting are found at intensities in the range of 1-20 GW/cm(2).  相似文献   

18.
We present a new monolithic GaAs-based semiconductor saturable absorber operating at 1.55 microm. An epitaxially grown absorber mirror in a GaInNAs/GaAs material system was successfully used to mode lock an erbium-doped fiber laser. The GaInNAs material system possesses intriguing physical properties and provides great potential for lasers and nonlinear optical devices operating at the 1.3-1.55-microm wavelength range.  相似文献   

19.
We demonstrate a synchronously pumped high-gain optical parametric oscillator with feedback through a fiber, using a passively mode-locked Yb:YAG thin-disk laser as a pump source. We obtain as much as 19-W average signal power at a wavelength of 1.45 microm in 840-fs pulses and 7.8 W of idler power at 3.57 microm. The repetition rate of the pulses is 56 MHz, and the transverse beam quality of the generated signal is M2 < 1.6.  相似文献   

20.
Jackson SD 《Optics letters》2004,29(4):334-336
A high-power tandem-pumped Ho3+, Pr3+-doped ZBLAN fiber laser is demonstrated. Using the free-running 1100-nm output from a diode-cladding-pumped Yb3+-doped silica fiber laser as the pump source, a maximum output power of 2.5 W was generated at a slope efficiency of 29% after the threshold of approximately 30 mW was reached. Saturation of the output is avoided with Pr3+ codoping, which allows single-transition output. The center wavelength of the output was 2.86 microm and the bandwidth at maximum power was approximately 15 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号