首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyfluorene end-capped with N-(2-benzothiazole)-1,8-naphthalimide (PF-BNI) is a highly fluorescent material with fluorescence emission modulated by solvent polarity. Its low energy excited state is assigned as a mixed configuration state between the singlet S(1) of the fluorene backbone (F) with the charge transfer (CT) of the end group BNI. The triexponential fluorescence decays of PF-BNI were associated with fast energy migration to form an intrachain charge-transfer (ICCT) state, polyfluorene backbone decay, and ICCT deactivation. Time-resolved fluorescence anisotropy exhibited biexponential relaxation with a fast component of 12-16 ps in addition to a slow one in the range 0.8-1.4 ns depending on the solvent, showing that depolarization occurs from two different processes: energy migration to form the ICCT state and slow rotational diffusion motion of end segments at a longer time. Results from femtosecond transient absorption measurements agreed with anisotropy decay and showed a decay component of about 16 ps at 605 nm in PF-BNI ascribed to the conversion of S(1) to the ICCT excited state. From the ratio of asymptotic and initial amplitudes of the transient absorption measurement, the efficiency of intrachain ICCT formation is estimated in 0.5, which means that, on average, half of the excited state formed in a BNI-(F)(n)-BNI chain with n = 32 is converted to its low energy intrachain charge-transfer (ICCT) state.  相似文献   

2.
The singlet excited-state properties of the block copolymers of oligothiophene and oligosilylene in solution were investigated with several fast spectroscopic methods. Time-resolved fluorescence measurements at room temperature and in a glassy matrix revealed that the singlet excited states of the block copolymers are deactivated accompanying structural changes of the polymer. It became clear from the transient absorption spectroscopy that the absorption peak of the singlet excited state shifted to the longer wavelength side compared to that of the corresponding oligothiophenes because of the sigma-pi conjugation of the oligothiophene and oligosilylene. The intersystem crossing process generating the triplet excited state was also revealed by the transient absorption spectroscopy. Energy migration along the polymer chain was revealed by the fluorescence anisotropy measurements. The time constant for the energy migration became faster as the size of the oligothiophene in the polymer repeating unit became shorter. From comparison with the F?rster theory, the energy migration process was attributed to an incoherent hopping mechanism.  相似文献   

3.
The excited state of Chlorophyll a is investigated by femtosecond transient absorption. The transient absorption spectra of Q band and By band of Chlorophyll a in ethanol have been observed. The fast kinetics of Chlorophyll a which exhibit two ultrafast components were also measured. The one is assigned to transient absorption of the inhomogeneously broadened ground state absorption spectrum, while the other is the response of the solvent to the change of the electron configuration in the excited state due to salvation dynamics of the polar solvent molecules. To understand the anisotropy of Chlorophyll a in ethanol, the anisotropy profile was also performed by 405 nm excitation and found that the anisotropy profile is 0.143. The possible combination of θda, θdb and η at excitation of By band has been simulated.  相似文献   

4.
It is known that the relaxed excited state of [Ru(bpy)3]2+ is best described as a metal to ligand charge transfer (MLCT) state having one formally reduced bipyridine and two neutral. Previous reports have suggested [Malone, R. et al. J. Chem. Phys. 1991, 95, 8970] that the electron "hops" from ligand to ligand in the MLCT state with a time constant of about 50 ps in acetonitrile. However, we have done transient absorption anisotropy measurements indicating that already after one picosecond the molecule has no memory of which bipyridine was initially photoselected, which suggests an ultrafast interligand randomization of the MLCT state.  相似文献   

5.
The excited state intra-molecular proton transfer dynamics of 1-hydroxyanthraquinone in solution are investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations. Two characteristic bands of excited state absorption and stimu-lated emission are observed in transient absorption spectra with the excitation by the pump wavelength of 400 nm. From the delayed stimulated emission signal, the time scale of the intra-molecular proton transfer is determined to be about 32 fs. The quantum chemistry calculations show that the molecular orbits and the order of the S2 and S1 states are rever-sal and a conical intersection is demonstrated to exist along the proton transfer coordinate. After proton transfer, the second excited state of tautomer populated via the conical intersection undergoes the internal conversion with ~200 fs and the following intermolecular energy relaxation with ~16 ps. The longer component 300 ps can be explained in terms of the relaxation from excited-state tautomer to its ground state. From our observations, two proton transfer pathways via a conical intersection are proposed and the dominated one preserves the molecular orbits.  相似文献   

6.
The synthesis and photophysics of a new Re(I)-carbonyl diimine complex, Re(PNI-phen)(CO)(3)Cl, where the PNI-phen is N-(1,10-phenanthroline)-4-(1-piperidinyl)naphthalene-1,8-dicarboximide is reported. The metal-to-ligand charge transfer (MLCT) emission lifetime was increased approximately 3000-fold at room temperature with respect to that of the model complex [Re(phen)(CO)(3)Cl] as a result of thermal equilibrium between the emissive (3)MLCT state and a long-lived triplet ligand-centered ((3)LC) state on the PNI chromophore. This represents the longest excited state lifetime (τ = 651 μs) that has ever been observed for a Re(I)-based CT photoluminescence at room temperature. The energy transfer processes and the associated rate constants leading to the establishment of the excited state equilibrium were elucidated by a powerful combination of three techniques (transient visible and infrared (IR) absorption and photoluminescence), each applied from ultrafast to the micro/milliseconds time scale. The MLCT excited state was monitored by transient IR using CO vibrations through time intervals where the corresponding signals obtained in conventional visible transient absorption were completely obscured by overlap with strong transients originating from the pendant PNI chromophore. Following initial excitation of the (1)LC state on the PNI chromophore, energy is transferred to form the MLCT state with a time constant of 45 ps, a value confirmed in all three measurement domains within experimental error. Although transient spectroscopy confirms the production of the (3)MLCT state on ultrafast time scales, Fo?rster resonance energy transfer calculations using the spectral properties of the two chromophores support initial singlet transfer from (1)PNI* to produce the (1)MLCT state by the agreement with the experimentally observed energy transfer time constant and efficiency. Intersystem crossing from the (1)MLCT to the (3)MLCT excited state is believed to be extremely fast and was not resolved with the current experiments. Finally, triplet energy was transferred from the (3)MLCT to the PNI-centered (3)LC state in less than 15 ns, ultimately achieving equilibrium between the two excited states. Subsequent relaxation to the ground state occurred via emission resulting from thermal population of the (3)MLCT state with a resultant lifetime of 651 μs. The title chromophore represents an interesting example of "ping-pong" energy transfer wherein photon excitation first migrates away from the initially prepared (1)PNI* excited state and then ultimately returns to this moiety as a long-lived excited triplet which disposes of its energy by equilibrating with the photoluminescent Re(I) MLCT excited state.  相似文献   

7.
合成了具有分子内电荷转移(ICT)性质的三重态光敏剂分子BDP,研究了其稳态吸收光谱、荧光光谱、荧光寿命、飞秒/纳秒瞬态吸收光谱及诱导产生单线态氧的能力等性质,发现强极性溶剂对BDP分子的溶剂化效应降低了其ICT态和第一激发三重态(T1态)的能量,从而降低了BDP分子单线态氧的产量.  相似文献   

8.
The excited‐state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis‐ and trisphthalocyanines) are studied by using steady‐state and femtosecond transient absorption spectral measurements, where the excited‐state energy‐transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis‐Pc). In trisphthalocyanine (tris‐Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre‐associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady‐state spectra also show a face‐to‐face conformation in bis‐Pc, whereas in tris‐Pc, two of the three phthalocyanine branches form a pre‐associated face‐to‐face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure–property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.  相似文献   

9.
Heteroporphyrin and -phthalocyanine arrays represent an attractive class of light harvesters and charge-separation systems exhibiting an easy route of synthesis and high chemical stability. In the present work, we report the results of photophysical investigations of two novel non-sandwich-type porphyrin-phthalocyanine heterotriads, in which two meso-tetraphenylporphyrin rings (H2TPP or ZnTPP) are linked to the central silicon atom of a silicon(IV) phthalocyanine core. It was found that the photophysical properties of the triads (H2Tr and ZnTr) in N,N-dimethylformamide (DMF) and toluene are strongly affected by two different types of interaction between the porphyrin (P) and the phthalocyanine (Pc) parts, namely excitation energy transfer (EET) and photoinduced charge transfer. The first process results in appearance of the Pc fluorescence when the P-part is initially excited, and plays a dominant role in fast depopulation of the first excited singlet state of the P moiety. If the first excited singlet state of the Pc-part is populated (either directly or via EET), it undergoes fast depopulation by hole transfer (HT) to the charge-separated (CS) state. In polar DMF, the CS state is the lowest excited state, and the charge recombination occurs directly to the ground state. Using transient absorption spectroscopy, the lifetime of the CS state was estimated to be 30 and 20 ps for H2Tr and ZnTr, respectively. In nonpolar toluene, the energy gap between the first excited singlet state of the Pc-part and the CS state is very small, and back HT occurs in both triads, resulting in appearance of "delayed fluorescence" of the Pc-part with a decay time similar to the lifetime of the CS state (190 and 280 ps for H2Tr and ZnTr, respectively). Since the energy of the CS state of ZnTr in toluene is lower than that of H2Tr, the probability of back HT for ZnTr is lower. This was clearly proved by decay-associated fluorescence spectral measurements.  相似文献   

10.
In this report we describe the synthesis of multichromophore arrays consisting of two Bodipy units axially bound to a Sn(IV) porphyrin center either via a phenolate (3) or via a carboxylate (6) functionality. Absorption spectra and electrochemical studies show that the Bodipy and porphyrin chromophores interact weakly in the ground state. However, steady-state emission and excitation spectra at room temperature reveal that fluorescence from both the Bodipy and the porphyrin of 3 are strongly quenched suggesting that, in the excited state, energy and/or electron transfer might occur. Indeed, as transient absorption experiments show, selective excitation of Bodipy in 3 results in a rapid decay (τ ≈ 2 ps) of the Bodipy-based singlet excited state and a concomitant rise of a charge-separated state evolving from the porphyrin-based singlet excited state. In contrast, room-temperature emission studies on 6 show strong quenching of the Bodipy-based fluorescence leading to sensitized emission from the porphyrin moiety due to a transduction of the singlet excited state energy from Bodipy to the porphyrin. Emission experiments at 77 K in frozen toluene reveal that the room-temperature electron transfer pathway observed in 3 is suppressed. Instead, Bodipy excitation in 3 and 6 results in population of the first singlet excited state of the porphyrin chromophore. Subsequently, intersystem crossing leads to the porphyrin-based triplet excited state.  相似文献   

11.
Two n-type molecular materials are covalently combined into a new photovoltaic component for polymer solar cells. Light harvesting by the perylenediimide results in very fast energy transfer to the fullerene unit, as shown with femtosecond transient absorption spectroscopy in toluene solution. Two energy transfer rates are observed of 2.5 x 10(12) s-1 (53%) and 2 x 10(11) s-1 (47%), attributed to two conformations. The final excited state that is populated is a perylenediimide-based triplet state that is formed on the nanosecond time scale with a high yield.  相似文献   

12.
Quasiclassical trajectory calculation (QCT) is used frequently for studying collisional energy transfer between highly vibrationally excited molecules and bath gases. In this paper, the QCT of the energy transfer between highly vibrationally excited C6F6 and N2 ,O2 and ground state C6F6 were performed. The results indicate that highly vibrationally excited C6F6 transferred vibrational energy to vibrational distribution of N2, O2 and ground state C6F6, so they are V-V energy transfer. Especially it is mainly V-V resonance energy transfer between excited C6F6 andground state C6F6, excited C6F6 transfers more vibrational energy to ground state C6F6 than to N2 and O2. The values of QCT, - (ΔEvib) of excited C6F6 are smaller than those of experiments.  相似文献   

13.
Analysis of time-resolved anisotropy of transient absorption enabled determination of room temperature ground and excited state rate constants for intramolecular double hydrogen transfer in two similar porphycenes, one of them with symmetric and the other, with asymmetric character of a double minimum potential for hydrogen motion. The perturbation preserves a quasi-symmetric minimum in S(0), but the rate decreases approximately two times. In S(1), the perturbed potential becomes strongly asymmetric, and the downhill hydrogen transfer occurs with a rate higher than that observed for a symmetrical compound.  相似文献   

14.
We report the energy dependence of strong collisions of CO(2) with highly vibrationally excited azulene for two initial energies, E=20 390 and 38 580 cm(-1). These studies show that both the distribution of transferred energy and the energy transfer rates are sensitive to the azulene energy. Highly excited azulene was prepared in separate studies by absorption of pulsed excitation at lambda=532 or 266 nm, followed by rapid radiationless decay from S(1) or S(4) to vibrationally excited levels of the ground electronic state. The appearance of scattered CO(2) (00(0)0) molecules with E(rot)>1000 cm(-1) was monitored by high-resolution transient IR absorption at lambda=4.3 mum. The average rotational and translational energies of the scattered CO(2) molecules double when the azulene energy is increased by a factor of 2. The rate of energy transfer in strong collisions increases by nearly a factor of 4 when the azulene energy is doubled. The energy transfer probability distribution function for DeltaE>3000 cm(-1) at each initial energy is an exponential decay with curvature that correlates with the energy dependence of the state density, in excellent agreement with predictions from GRETCHEN, a model based on Fermi's golden rule to describe collisional quenching of highly excited molecules.  相似文献   

15.
The electronic ground and excited-state structures of the betaine dye molecule pyridinium- N-phenoxide [4-(1-pyridinio)phenolate] are investigated both in the gas phase and in aqueous solution, using the reference interaction site model self-consistent-field (RISM-SCF) procedure within a CASSCF framework. We obtain the total free energy profiles in both the ground and excited states with respect to variation in the torsion angle between the phenoxide and pyridinium rings. We analyze the effect of solvent on the variation of the solute dipole moment and on the charge transfer character in the excited state. In the gas phase, it is shown that the potential energy profile in the excited-state decreases monotonically toward a perpendicular ring orientation and the dipole moment decreases along with decreasing charge localization. In water, the free energy surface for twisting is better characterized as nearly flat along the same coordinate for sterically accessible angles. These results are analyzed in terms of contributions of the solvation free energy, the solute electronic energy, and their coupling. Correspondingly, the dependence of the charge transfer character on solute geometry and solvation are analyzed, and the important roles in the excitation and subsequent relaxation processes for the betaine dye are discussed. It is found that there is considerable solute electronic reorganization associated with the evolution of solvation in the excited state, and it is suggested that this reorganization may contribute significantly to the early time evolution of transient spectra following photoexcitation.  相似文献   

16.
Theoretical electronic structure calculations are reported for the dissociation of water adsorbed on a 31-atom silver cluster, Ag31, and subsequent transfer of a H to a second Ag31 cluster leaving OH on the first cluster. Both ground and excited electronic state processes are considered for two choices of Ag cluster separation, 6.35 and 7.94 A, on the basis of preliminary calculations for a range of separation distances. The excited electronic state of interest is formed by photoemission of an electron from one Ag cluster and transient attachment of the photoemitted electron to the adsorbed water molecule. A very large energy barrier is found for the ground-state process (3.53 eV at a cluster separation of 6.35 A), while the barrier in the excited state is small (0.38 eV at a cluster separation of 6.35 A). In the excited state, partial occupancy of an OH antibonding orbital facilitates OH stretch and concomitant movement of the negatively charged OH toward the electron-hole in the metal cluster. The excited-state pathway for dissociation of water and transfer of H begins with the formation of an excited electronic state at 3.59-3.82 eV. Stretch of the OH bond occurs with little change in energy (0.38-0.54 eV up to a stretch of 1.96 A). In this region of OH stretch the molecule must return to the ground-state potential energy surface to fully dissociate and to transfer H to the other Ag cluster. Geometry optimizations are carried out using a simplex algorithm and a semigrid method. These methods allow the total energy to be calculated directly using configuration interaction theory.  相似文献   

17.
The time scale for triplet-triplet energy transfer (EnT) between a Ru(II) chromophore and a ligand bound anthracene acceptor in [Ru(II)(dmb)2(bpy-an)]2+ (dmb = 4,4'-dimethyl-2,2-bipyridine; bpy-an = 4-(9-anthrylethylene), 4-methyl-2,2-bipyridine) has been measured using femtosecond transient absorption spectroscopy. The appearance of the anthracene excited state is monitored following photoexcitation to a metal-to-ligand charge transfer (MLCT) state via the pi pi* absorption of the triplet excited state of anthracene. Our time-resolved experiments show the presence of fast, sub-100 ps energy transfer to the anthracene occurring on two characteristic time scales of 23 and 72 ps.  相似文献   

18.
Although the late (t>1 ps) photoisomerization steps in Schiff bases have been described in good detail, some aspects of the ultrafast (sub-100 fs) proton transfer process, including the possible existence of an energy barrier, still require experimental assessment. In this contribution we present femtosecond fluorescence up-conversion studies to characterize the excited state enol to cis-keto tautomerization through measurements of the transient molecular emission. Salicylideneaniline and salicylidene-1-naphthylamine were examined in acetonitrile solutions. We have resolved sub-100 fs and sub-0.5 ps emission components which are attributed to the decay of the locally excited enol form and to vibrationally excited states as they transit to the relaxed cis-keto species in the first electronically excited state. From the early spectral evolution, the lack of a deuterium isotope effect, and the kinetics measured with different amounts of excess vibrational energy, it is concluded that the intramolecular proton transfer in the S1 surface occurs as a barrierless process where the initial wave packet evolves in a repulsive potential toward the cis-keto form in a time scale of about 50 fs. The absence of an energy barrier suggests the participation of normal modes which modulate the donor to acceptor distance, thus reducing the potential energy during the intramolecular proton transfer.  相似文献   

19.
The spectroscopy and dynamic behavior of the self-assembled, Soret-excited zinc tetraphenylporphyrin (ZnTPP) plus fullerene (C(60)) model system in solution has been examined using steady state fluorescence quenching, nanosecond time-correlated single photon counting, picosecond fluorescence upconversion, and picosecond transient absorption methods. Evidence of ground state complexation is presented. Steady-state quenching of the S(2) and S(1) fluorescence of ZnTPP by C(60) reveals that the quenching processes only occur in the excited complexes, are ultrafast, and proceed at different rates in the two states. Only uncomplexed ZnTPP is observed by fluorescence lifetime methods; the locally excited complexes are either dark or, more likely, rapidly relax to products that do not radiate strongly. Both short-range (Dexter) energy transfer and electron transfer relaxation mechanisms are evaluated. Picosecond transient absorption data obtained from the subtle differences between the spectra of Soret-excited ZnTPP with and without a large excess of added C(60) reveal the formation, on a subpicosecond time scale, of relatively long-lived charge-separated species. Soret excitation of ZnTPP···C(60) does not produce a quantitative yield of species in the lower S(1) excited state.  相似文献   

20.
The light-driven reactions of photosynthesis are the means by which nature converts solar energy into electrochemical potential, which is eventually stored as chemical energy. These initial reactions occur in two closely coupled pigment systems, the network of so-called antenna system in which the excitation en-ergy is absorbed by the pigments and efficiently transported to another system, the photosynthetic reac-tion center where the energy is converted into a stable trans-membrane charge sepa…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号