首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of trimethyl-hydroquinone with methyl vinyl ketone in acidic methanol gave rac.-2-methoxy-2,5,7,8-tetramethyl-chroman-6-ol ( 8 ). This acetal was converted in four steps to rac.-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-yl)acetic acid ( 13 ). Acid 13 was readily resolved with α-methyl-benzylamine to give the (S)-enantiomer 14 . Treatment of the unwanted (2 R)-isomer with acid regenerated 13 , thus leading to an efficient use of this compound. Employing a side chain derived from phytol, 14 was converted to (2R, 4′R, 8′R)-α-tocopherol ( 1d , ‘natural’ vitamin E). A reaction sequence from 14 involving two highly stereoselective Claisen rearrangements has provided the first total synthesis of (2R,'E,7′E)-α-tocotrienol ( 2d ).  相似文献   

2.
Stereochemical Correlations between (2R,4′R,8′R)-α-Tocopherol, (25S,26)-Dihydroxycholecalciferol, (–)-(1S,5R)-Frontalin and (–)-(R)-Linalol The optically active C5- and C4-building units 1 and 2 with their hydroxy group at a asymmetric C-atom were transformed to (–)-(1S,5R)-Frontalin ( 7 ) and (–)-(3R)-Linalol ( 8 ) respectively; 1 and 2 had been used earlier in the preparation of the chroman part of (2R,4′R,8′R)-α-Tocopherol ( 6a , vitamin E), and for introduction of the side chain in (25S,26)-Dihydroxycholecalciferol ((25S)- 4 ), a natural metabolite of Vitamin D3. The stereochemical correlations resulting from these converions fit into a coherent picture with those correlations already known from literature and they confirm our earlier stereochemical assignments. A stereochemical assignment concerning the C(25)-epimers of 25,26-Dihydroxycholecalciferol that was in contrast to our findings and that initiated the conversion of 1 and 2 to 7 resp. 8 for additional stereochemical correlations has been corrected in the meantime by the authors [26].  相似文献   

3.
Methyl 2-O-benzyl-3,6-thioanhydro-α-D-mannopyranoside ( 9 ) was obtained in eight steps from the commercially available methyl α-D-glucopyranoside. Compound 9 was transformed into (2R,3R,4S)-3-benzyloxy-4-hydroxy-2-[(R)-1-benzyloxy-4-hydroxybutyl]thiolane ( 14 ) by acid hydrolysis of its 2,4-di-O-benzyl derivative 10 followed by reaction of the not isolated 2,4-di-O-benzyl-3,6-thioanhydro-D-mannose ( 11 ) with ethoxycarbonylmethylenetriphenylphosphorane to give an = 1:1 E/Z mixture of the corresponding α,β-unsaturated ester ( 12 ). Finally, catalytic hydrogenation of 12 to ethyl (R)-4-benzyloxy-4-[(2′R)3′R,4′S)-3′-benzyloxy-4′-hydroxythiolan-2′-yl]butanoate ( 13 ) and subsequent reduction with lithium aluminum hydride gave the title compound 14 .  相似文献   

4.
All eight stereoisomers of α-tocopheryl acetate have been synthesized in a state of high chemical and stereoisomeric purity. Key chiral side-chain intermediates were prepared from (+)-(S)-3-hydroxy-2-methylpropanoic acid. New routes to (2R, 4′ RS, 8′ RS)-α-tocopheryl acetate, a mixture of four diastereoisomers, were also developed. A sensitive gas chromatographic method was developed to determine the diastereoisomeric and enantiomeric purity of α-tocopherol samples as the methyl ethers. It was established for the first time that naturally occurring α-tocopherol is essentially a single enantiomer (2 R, 4′ R, 8′ R), synthetic all-rac-α-tocopherol an equimolar mixture of four racemates, and that natural (E)-(7 R, 11 R)-phytol is diastereoisomerically and enantiomerically homogeneous.  相似文献   

5.
The structures of the main carotenoid pigments from the mutant 1-207 of Rhizobium lupini were elucidated by spectroscopic techniques (UV./VIS., CD., 270 MHz 1H-NMR., and MS.). Ten carotenoids were identified, namely β,β-carotene ( 1 ), β,β-caroten-4-one (echinenone, 2 ), β,β-carotene-4,4′-dione (canthaxanthin, 3 ), (3S)-3-hydroxy-β,β-caroten-4-one ((3S)-3-hydroxyechinenone, 4 ), (2R, 3R)-β,β-carotene-2,3-diol ( 5 ), (3S)-3-hydroxy-β,β-carotene-4,4′-dione ((3S)-adonirubin, 6 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4-one ( 7 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4,4′-dione ( 8 ), (2R, 3S, 2′R, 3′R)-2,3,2′,3′-tetrahydroxy-β,β-caroten-4-one ( 9 ) and the corresponding (2R, 3S, 2′R, 3′S)-4,4′-dione ( 10 ). Structures 5, 7, 8 and 10 have not been reported before. From the observed carotenoid pattern it is concluded that in this mutant the oxidation to 4-oxo compounds is favoured compared to the hydroxylation at C(3) and C(2).  相似文献   

6.
Synthesis of Optically Active Natural Carotenoids and Structurally Related Compounds. V. Synthesis of (3R, 3′R)-, (3S, 3′S)- and (3R,3′S; meso)-zeaxanthin by Asymmetric Hydroboration. A New Approach to Optically Active Carotenoid Building Units The synthesis of (3R, 3′R)-, (3S, 3′S)- and (3R,3′S; meso)-zeaxanthin ( 1 ), ( 19 ) and ( 21 ) is reported utilizing asymmetric hydroboration as the key reaction. Thus, safranol isopropenylmethylether ( 4 ) is hydroborated with (+)- and (?)-(IPC)2BH to give the optically pure key intermediates 5 and 7 resp., which are transformed into the above-mentioned C40-compounds.  相似文献   

7.
Starting from (R)-3-hydroxybutyric acid ((R)- 10 ) the C45- and C50-carotenoids (all-E,2S,2′S)-bacterioruberm ( 1 ), (all-E,2S,2′S)-monoanhydrobacterioruberin ( 2 ), (all-E,2S,2′S)-bisanhydrobacterioruberin ( 3 ), (all-E,2R,2′R)-3,4,3′,4′-tetrahydrobisanhydrobacterioruberin ( 5 ), and (all-E,S)-2-isopentenyl-3,4-dehydrorhodopin ( 6 ) were synthesized. By comparison of the chiroptical data of the natural and the synthetic compounds, the (2S)- and (2′S)-configuration of the natural products 1–3 and 6 was established.  相似文献   

8.
Absolute Configuration of Loroxanthin (=(3R, 3′R, 6′R)-β, ?-Carotene-3, 19, 3′-triol) ‘Loroxanthin’, isolated from Chlorella vulgaris, was separated by HPLC. methods in two major isomers, a mono-cis-loroxanthin and the all-trans-form. Solutions of the pure isomers easily set up again a mixture of the cis/trans-isomers. Extensive 1H-NMR. spectral measurements at 400 MHz allowed to establish the 3′, 6′-trans-configuration at the ?-end group in both isomers and the (9E)-configuration in the mono-cis-isomer. The absolute configurations at C(3) and C(6′) were deduced from CD. correlations with synthetic (9Z, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 5 ) and (9E, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 6 ), respectively. Thus, all-trans-loroxanthin ( 3 ) is (9Z, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol and its predominant mono-cis-isomer is (9E, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol ( 4 ). Cooccurrence in the same organism and identical chirality at all centers suggest that loroxanthin is biosynthesized from lutein ( 2 ).  相似文献   

9.
Stereoisomeric Sinensiaxanthins and Sinensiachromes: Separation and Absolute Configuration The so-called sinensiaxanthins and sinensiachromes, important apocarotenols from various fruits, have been separated into 2 and 4 stereoisomers, respectively, and their absolute configurations have been determined: (3S,5R,6S)-5,6-epoxy-5,6-dihydro-10′-apo-β-carotene-3,10′-diol ( 2 ), its (9Z)-stereoisomer 7, the (8R)- and (8S)-epimers of (3S, 5R)-5,8-epoxy-5,8-dihydro- 10′ -apo-β-carotene-3, 10′-diol ( 4 and 5 ), and their (9Z)-stereoisomers 3 and probably 6. Thus, sinensiaxanthins are cleavage products from (Z/E)-isomeric antheraxanthins or violaxanthins (scission at C(9′)–C(10′)) and sinensiachromes analogously from mutatoxanthins or auroxanthins.  相似文献   

10.
Nine compounds were isolated from Nocardia sp. YIM 64630, and their structures were elucidated as 5′-O-acetyl-2′-deoxyuridine (1), 22E,24R-5α,6α-epoxyergosta-8(14),22-diene-3β,7α-diol (2), 22E,24R-5α,6α-epoxyergosta-8,22-diene-3β,7α-diol (3), 22E,24R-ergosta-7,22-diene-3β,5α,6β-triol (4), 5α,8α-epidioxyergosta-6,22-dien-3β-ol (5), 4′,5,6-trihydroxy-7-methoxyisoflavone (6), 2,4,4′-trihydroxy-deoxybenzoin (7), methyl [4-hydroxyphenyl]acetate (8) and daidzein by extensive spectroscopic analyses. Compound 1 was isolated from natural resources for the first time. The antimicrobial and antioxidant activities of compounds 18 were investigated.  相似文献   

11.
The synthesis, absolute configuration, and olfactive evaluation of (?)-(E)-α-trans-bergamotenone (= (?)-(1′S,6′R,E)-5-(2′,6′-dimethylbicyclo[3.1.1]hept-2′-en-6′-yl)pent-3-en-2-one; (?)- 1 ), as well as its homologue (?)- 19 are reperted. The previously arbitrarily attributed absolute configuration of 1 and of (?)-α-trans-bergamotene (= (?)-(1 S,6R)-2,6-dimethyl-6-(4-methylpent-3-enyl)bicyclo[3.1. 1]hept-2-ene; (?)- 2 ), together with those of the structurally related aldehydes (?)- 3a,b and alcohols (?)- 4a,b , have been rigorously assigned.  相似文献   

12.
Synthesis of optically active natural carotenoids and structurally related compounds. IV. Synthesis of (3R, 3′R, 6′R)-lutein The synthesis of (3R, 3′R, 6′R)-lutein ( 19 ) according to the building principle C25+C15?C40 is reported utilizing (R)-4-hydroxy-2,6,6-trimethyl-2-cyclohexen-1-one ( 4 ) as a readily available key intermediate.  相似文献   

13.
The content of total carotenoids and the ratio astaxanthin/idoxanthin ( = 3,3′-dihydroxy-β,β-carotene-4,4′-dione/3,3′,4′-trihydroxy-β,β-caroten-4-one) in varoius organs and tissues of one Atlantic salmon (Salmo salar, L.) reared indoors in a tank were analyzed after feeding ‘racemic’ ((3R,3′R)/(3R,3′S; meso)/(3S,3′S) 1:2:) astaxanthin (90 mg/kg feed) during one yera. Configurational analysis of astaxanthin was carried out via the (?)-dicamphanate derivative and that of idoxanthin after reaction with (+)-(S)-l-(l-naphthyl)ethyl isocyanate. Separation of all eight optical isomers of idoxanthin-tricarbamate derivatives by HPLC is described. In salmon, enzymatic reduction of astaxanthin was found to be sterospecific leading to th (4′R)-hydroxy group irrespective of the configuration at C(3′), thus resulting in four different stereoisomers of idoxanthin formed from (3R,3′R), (3R,3′S; meso)-, and (3S3′S)-astaxanthin present in the diet.  相似文献   

14.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

15.
The photooxygenation of (4R,4aS,7R)-4,4a,5,6,7,8-hexahydro-4,7-dimethyl-3H-2-benzopyran ( 16 ) was performed in (i) MeOH, (ii) acetaldehyde, and (iii) acetone at ?78°. The products obtained respectively were (i) (2R)-2-[(1S,4R)-4-methyl-2-oxocyclohexyl]propyl formate ( 17 ; 72% yield), (ii) 17 (54.5%), (1R,4R,4aS,7R)-3,4,4a,5,6,7-hexahydro-4,7-dimethyl-1H-2-benzopyran-2-yl hydroperoxide ( 19 ; 16.7%), a 12:1 ratio of (3R,4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,7,10-trimethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4-trioxane ( 20 ) and its C(3)-epimer 21 (17%), together with evidence for the 1,2-dioxetane ( 22 ) originating from the addition of dioxygen to the re-re face of the double bond of 16 , and iii) unidentified products and traces of 22 . Addition of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) to the acetone solution of 16 after photooxygenation afforded (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4,-trioxane ( 23 , 40%). The photooxygenation of 16 in CH2Cl2 at ?78° followed by addition of acetone and Me3SiOTf afforded 17 (11%), 23 (59%), and (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[8a,1-e]-1,2,4-trioxane ( 24 ; 5%. Repetition of the last experiment, but replacing acetone by cyclopentanone, gave 17 (16%), (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[1,8a-e]-1,2,4-trixane] ( 25 ; 61%), and (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[8a,1-e]-1,2,4-trixane] ( 26 , 4%). The X-ray analysis of 23 was performed, which together with the NMR data, established the structure of the trioxanes 20, 21, 24, 25 , and 26 . Mechanistic and synthesis aspects of these reactions were discussed in relation to the construction of the 1,2,4-trioxane ring in arteannuin and similar molecules.  相似文献   

16.
It is shown here that the stoloniferan coral Sarcodictyon roseum of east Pyrenean waters contains four novel diterpenoids, sarcodictyin C ((?) -3 ), D ((?) -4 ), E ((+)- 5 ), F ((+)- 6 ), which are related to sarcodictyin A ( = (?)-(4R,4aR,7R,10S,11S,12aR,1Z,5E,8Z-7,10-epoxy-3,4,4a,7,10,11,12,12a-octahydro-7-hydroxy-6-(methyoxycarbonyl)-1,10-dimethyl-4-(1-methylethyl)-benzocyclodecen-11-yl (E)-N1-methylyrocanate; ((?)? 1 ), previously isolated from the same coral. Sarcodictyin C ((?) -3 ) and D ((?) -4 ) and the 3α-hydroxy and 3α-acetoxy derivatives of (?) -1 ), sarcodictyin E ((+) -5 ) is the (Z)-urocanate isomer of (?) -3 ), and sarcodictyin F ((+) -6 ) is the 1α-hydroxy-2-ene isomer of (?) -3 . In all cases, the nine-membered ring is locked, and the molecule stabilized, by the urocanic appendage; when this is removed in MeOH/KOH, the C(11)–O? function is free to attack at C(5), and retro-condensations then lead to the ring-contracted butenolides 11 (from (?) -3 ) or 10 (from(?) -1 ) with extrusion of the hydroxyfuran nucleus (Scheme 3). Under the same conditions, with (?) -3 , the C(3)-O? group competitively attacks at C(5), the hydroxyfuran nucleus is expelled, and aldehyde 14 is formed. Peculiarly, in the reaction of (?) -3 with MeOD/KOD, the ring-contracted butenolide 17 contains D at the 4′-ax position. The sarcodictyins are unique in these chemical properties, not shared by the cladiellanes which have the same C-skeleton.  相似文献   

17.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

18.
The Diastereomeric Aurochromes: Their Synthesis, Analysis and Chiroptical Properties (all-E)-Aurochrome (5,8:5′,8′-diepoxy-5,8,5′,8′-tetrahydro-β,β-carotene; 1 ) has two pairs of constitutionally identical chiral centres and, therefore, is expected to exist in four pairs of enantiomers and two meso-forms. Using starting materials with well-defined configuration, we performed the syntheses of the following pure aurochromes: (5R,8R,5′R,8′R)-aurochrome ( 2 ) and its racemate, Meso-(5R,8R,5′S,8′S)-aurochrome ( 3 ), (5 R,8 S,5′ R,8′ S)-aurochrome ( 4 ) and its racemate, meso-(5R,8S,5′S,8′R)-aurochrome ( 5 ), (5R,8R,5′R,8′S)-aurochrome ( 6 ) and its racemate. The (5RS,8RS,5′SR,8′RS)-aurochrome ( 7 ) was detected chromatographically, using a HPLC system that allows clean separation of the four racemic- (or optically active) and the two meso-aurochromes. The optically active autochromes 2 and 4 exhibit non-conservative CD spectra with strong Cotton effects of opposite but not mirror-like tracings. Solutions of aurochromes in CHCl3, in the presence of HCl, undergo epimerization at C(8). Those epimers with CH3 trans to C(9) slightly predominate under equilibrium conditions. Deprotonation of the phosphonate (±)- 14 with strong base causes isomerization at the terminal oxirane into a dihydrofuran. This reaction allowed convenient syntheses of the diastereoisomeric aurochromes (±)- 2, 3 , (±)- 4, 5 , (±)- 6 , and (±)- 7 and of (5RS, 8RS)- and (5RS, 8SR)-12′-apo-aurochrome-12′-als ( 21 and 22 , respectively).  相似文献   

19.
The Diels-Alder adduct of 2,4-dimethylfuran to 1-cyanovinyl (1′R)-camphanate ((+)-(1R,2S,4R)-2-exo-cyano-1,5-dimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl (1′R)-camphanate ((+)- 1 )) was converted into (+)-2,7-dideoxy-2,4-di-C-methyl-L -glycero- ((+)- 6 ) and -D -glycero-L -altro-heptono-1,4-lactone ((+)- 7 ), into (?)-(3R,4R,5R,6S)-3,4:5,7-bis(isopropylidenedioxy)-4,6-dimethylheptan-2-one ((?)- 22 ), and into (+)-(2R,3R,4R,5S,6S)-3,4:5,6-bis(isopropylidenedioxy)-2,4-dimethylheptanal ((+)- 34 ). Condensation of ((+)- 34 with the lithium enolate of (?)-(1R,4R,5S,6R)-6-exo-[(tert-butyl)dimethylsilyloxy]-1,5-endo-dimethyl-7-oxabicyclo[2.2.1] heptan-2-one ((?)- 38 ; derived from (+)- 1 ) gave a 3:2 mixture of aldols (+)- 39 and (+)- 40 (mismatched pairs of a α-methyl-substituted aldehyde and (E)-enolate) whereas the reaction of (±)- 34 with (±)- 38 gave a 10:1 mixture of aldols (±)- 41 and (±)- 39 . A single aldol, (?)- 44 , was obtained to condensing (+)- 34 with the lithium enolate of (+)-(1S,4S,5S,6S)-5-exo-(benzyloxy)-1,5-endo-dimethyl-7-oxabicyclo[2.2.1]heptan-2-one ((+)- 43 ; derived from (?)-(1S,2R,4S)-2-exo-cyano-1,5-dimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl (1′S)-camphanate ((?)- 3 )). All these cross-aldolisations are highly exo-face selective for the bicyclic ketones. The best stereochemical matching is obtained when the lithium enolates and α-methyl-substituted aldehydes can realize a ‘chelated transition state’ that obeys the Cram and Felkin-Anh models (steric effects). Polypropionate fragments containing eleven contiguous stereogenic centres and tertiary-alcohol moieties are thus prepared with high stereoselectivity in a convergent fashion. The chiral auxiliaries ((1R)- and (1S)-camphanic acid) are recovered at the beginning of the syntheses.  相似文献   

20.
The diastereoisomeric (+)-[1,8-14C]-(1'R,6R, S)-α-bisabolol ( 2a ) and (?)-[1,8-14C]-(1′S, 6R, S)-α-bisabolol ( 2b ) were synthesized by reaction of the Grignard compound of [1,6-14C]-5-bromo-2-methyl-2-pentene ( 12 ) with (+)-(R)- and (?)-(S)-4-acetyl-1-methyl-1-cyclohexene, ( 6a ) and ( 6b ) respectively. For the preparation of compound 12, cyclopropyl methyl ketone was treated with [14C]-methyl magnesium iodide to form the carbinol 11, which was cleaved by HBr. Compounds 6a and 6b were synthesized from (+)-(R)- and (?)-(S)-limonene, ( 4a ) and ( 4b ), via the derivatives 5a , 6a and 5b , 6b respectively. - This synthesis established the absolute configuration at C(1′) of the natural α-bisabolols: (R) for (+)-α-bisabolol and (S) for (?)-α-bisabolol. - Feeding experiments with cultures of Myrothecium roridum and radioactive (+)-(1′R, 6R, S)- and (?)-(1′S, 6R, S)-α-bisabolol ( 2a ) and ( 2b ) gave negative results. These findings indicate that bisabolane derivatives are not intermediates in the biosynthesis of verrucarol (3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号