首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
摘要开发出一种新型电化学检测器,该检测器具有噪声低、基线漂移小、检测限低、整体体积小及便于现场使用等优点.在集成ITO电极的PDMS/玻璃毛细管电泳芯片上,利用多巴胺标准样品对该检测器的性能进行了评价.  相似文献   

2.
报道了毛细管电泳多道电化学检测器的研制及其应用,安培检测器和电导检测器并联在同一毛细管电泳检测系统中,在同一缓冲体系,同一工作电极下对同一复杂的分析体系同时进行电导和安培检测;整个装置综合了电导检测和安培检测两种检测器的优点,性能优良,造价低廉,对实际样品的检测取得了令人满意的结果。  相似文献   

3.
毛细管电泳多道电化学检测工作站   总被引:2,自引:0,他引:2  
设计的毛细管电泳多通道电化学检测系统是一个可供在同一个检测环境下,用多台电化学检测器循环对物质进行测定的工作站。工作站采用计算机控制,利用电导和伏安检测器对样品同时进行电导、氧化和还原检测,并实时对数据进行采集,处理,以图形方式显示。  相似文献   

4.
阐述了高效毛细管电泳电化学检测器(包括电导、电势和安培检测)的研究现状,重点是检测器的研制及接口的制作技术。对各种电化学检测器的应用情况也进行了总结。展望了高效毛细管电泳电化学检测的发展前景。  相似文献   

5.
基于自行构建的微流控芯片电泳集成非接触式电导检测分析系统,建立了一种集进样、分离与检测为一体的微流控芯片电泳电导检测蛋白质的方法,并用于人白蛋白(HSA)和人转铁蛋白(TRF)两种尿蛋白的分离分析以及肾病综合症病人尿液中白蛋白的定量检测.考察并优化了缓冲液、分离电压、进样方式、进样时间等电泳分离的影响因素,在缓冲液为p...  相似文献   

6.
一种新型毛细管电泳双圆盘电极电导检测池   总被引:1,自引:0,他引:1  
研制厂一种新型双凼盘电极毛细管电泳电导检测池。从理论和实验上分析验证了电导池参数、电导池位置对检测器性能的影响该检测池不仅结构简单、易于制作,而且极大地减小了柱外区带展宽,消除了高电压对检测器的影响,获得了较高的分离效率和信噪比采用Li^+、Na^+、K^+的混合物对该检测池的性能进行了测试在最佳实验条件下,其俭出限分别为5.1、3.9和2.3μmol/L。  相似文献   

7.
体液中卡托普利的乙醚提取毛细管电泳法测定;毛细管电泳;高频电导检测;非接触式电导检测;卡托普利;体液  相似文献   

8.
高效毛细管电泳电导检测器的研制   总被引:5,自引:0,他引:5  
研制了一种毛细管电泳电导检测器。采用激光烧蚀毛细管涂层、HF腐蚀和阴离子交换膜封堵制作在柱导电接口连接电泳毛细管和电导池,高压电场被有效隔离,以铂丝为工作电极实现柱后电导检测,在内径为50μm毛细管上分离检测了几种氨酸和金属离子,结果表明该系统性能优良。  相似文献   

9.
毛细管电泳(CE)电导检测(CD)是相对较灵敏和仪器结构简单的一项溶液分析技术,尤其是对于无生色团的无机离子分析更具有突出优势,因此,CE-CD技术近年来得到了较快发展[1],并已推出商品化的毛细管电泳电导检测器[2]。但CE和CD的偶联目前还存在如下几个问题:第一,加工适合于毛细管  相似文献   

10.
集成毛细管电泳芯片及其制作技术的进展   总被引:7,自引:0,他引:7  
集成毛细管电泳芯片是一个新兴的微量分析装置,它具有高效、快速、度样用量少、节约药品等优点。文章回顾了集成毛细管电泳芯片的历史,介绍了毛细管电泳芯片在原材料、制作方法、表征、进样、分离、检测等方面的进展,并展望了毛细管电泳芯片的前景。  相似文献   

11.
谭峰  关亚风 《色谱》2005,23(2):152-157
介绍了电容耦合非接触电导检测(C4D)的检测原理及其最新的研究进展,引用文献50篇。C4D是近几年发展起来的一种用于毛细管电泳和微流控芯片电泳的新检测技术。C4D检测器的原理清楚,结构简单,易于微型化、集成化,不污染检测电极,因而很有应用价值。  相似文献   

12.
Gas B  Zuska J  Coufal P  van de Goor T 《Electrophoresis》2002,23(20):3520-3527
Two constructions of the high-frequency contactless conductivity detector that are fitted to the specific demands of capillary zone electrophoresis are described. The axial arrangement of the electrodes of the conductivity cell with two cylindrical electrodes placed around the outer wall of the capillary column is used. We propose an equivalent electrical model of the axial contactless conductivity cell, which explains the features of its behavior including overshooting phenomena. We give the computer numerical solution of the model enabling simulation of real experimental runs. The role of many parameters can be evaluated in this way, such as the dimension of the separation channel, dimension of the electrodes, length of the gap between electrodes, influence of the shielding, etc. The conception of model allows its use for the optimization of the construction of the conductivity cell, either in the cylindrical format or in the microchip format. The ability of the high-frequency contactless conductivity detector is demonstrated on separation of inorganic ions.  相似文献   

13.
Glass microdevices for capillary electrophoresis (CE) gained a lot of interest in the development of micrototal analysis systems (microTAS). The fabrication of a microTAS requires integration of sampling, chemical separation and detection systems into a microdevice. The integration of a detection system into a microchannel, however, is hampered by the lack of suitable microfabrication technology. Here, a microfabrication method for integration of insulated microelectrodes inside a leakage-free microchannel in glass is presented. A combination of newly developed technological approaches, such as low-temperature glass-to-glass anodic bonding, channel etching, fabrication of buried metal interconnects, and deposition of thin plasma-enhanced chemical vapour deposition (PECVD) silicon carbide layers, enables the fabrication of a CE microdevice with an integrated contactless conductivity detector. The fabrication method of this CE microdevice with integrated contactless conductivity detector is described in detail. Standard CE separations of three inorganic cations in concentrations down to 5 microM show the viability of the new microCE system.  相似文献   

14.
毛细管电泳高频电导检测器的研制   总被引:42,自引:0,他引:42  
设计了一种新的毛细管电泳检测器.根据高频电导滴定原理,将电导电极做成两个金属圆筒套于分离毛细管外,并向两个电极施加高频电压.经毛细管分离后的组分流过两个电极之间时,高频电流发生变化,得到毛细管电泳图.该检测器具有应用范围广、操作简便及重现性好等优点,已初步应用于混合无机离子的测定.  相似文献   

15.
A contactless conductivity detector integrated into a poly(dimethylsiloxane) microchip for electrophoresis is presented. It adopted the simplest configuration of electrodes commonly used in this detection mode for capillary electrophoresis microchips. Although the chip is based on a simple and effective design, it is able to obtain low detection levels due to the low noise of the detection circuit. A circuit based on a lock-in amplifier was designed on printed circuit boards to read out the signal. The property of the detection cell was studied by applying excitation signals of different frequencies and different amplitudes. It was found that the best detection limit could be achieved with a frequency of 50?kHz and amplitude of 20?V. The performance of the detector was demonstrated by successfully separating and detecting several inorganic ions and also a mixture of heavy metal ions. An average detection limit of 0.4?μM was obtained for inorganic cations. This value is significantly improved compared to similar microchip-based detectors. The presented detector could be promising for mass production due to its properties, such as simple construction, high degree of integration, high performance and low cost.  相似文献   

16.
Guijt RM  Evenhuis CJ  Macka M  Haddad PR 《Electrophoresis》2004,25(23-24):4032-4057
Since the introduction of capillary electrophoresis (CE), conductivity detection has been an attractive means of detection. No additional chemical properties are required for detection, and no loss in sensitivity is expected when miniaturising the detector to scale with narrow-bore capillaries or even to the microchip format. Integration of conductivity and CE, however, involves a challenging combination of engineering issues. In conductivity detection the resistance of the solution is most frequently measured in an alternating current (AC) circuit. The influence of capacitors both in series and in parallel with the solution resistance should be minimised during conductivity measurements. For contact conductivity measurements, the positioning and alignment of the detection electrodes is crucial. A contact conductivity detector for CE has been commercially available, but was withdrawn from the market. Microfabrication technology enables integration and precise alignment of electrodes, resulting in the popularity of conductivity detection in microfluidic devices. In contactless conductivity detection, the alignment of the electrodes with respect to the capillary is less crucial. Contactless conductivity detection (CCD) was introduced in capillary CE, and similar electronics have been applied for CCD using planar electrodes in microfluidic devices. A contactless conductivity detector for capillaries has been commercialised recently. In this review, different approaches towards conductivity detection in capillaries and chip-based CE are discussed. In contrast to previous reviews, the focus of the present review is on the technological developments and challenges in conductivity detection in CE.  相似文献   

17.
Tay ET  Law WS  Sim SP  Feng H  Zhao JH  Li SF 《Electrophoresis》2007,28(24):4620-4628
A newly developed conductivity detector, the floating resistivity detector (FRD), for microchip electrophoresis was introduced in this work. The detector design permits decoupling of the detection circuit from the high separation voltage without compromising separation efficiency. This greatly simplifies the integration of microchip electrophoresis systems. Its method of detection relies on platinum electrodes being dipped in two buffer-filled branched detection probe reservoirs on the microchip device. In this way, analytes passing through the detection window will not pass through and subsequently adsorb onto the electrodes, alleviating problems of electrode fouling due to analyte contamination and surface reactions. A customized microchip design was proposed and optimized stepwise for the new FRD system. Each branched detection probe was determined to be 4.50 mm long with a 0.075 mm detection window gap between them. The distance between the detection window and buffer waste reservoir was determined to be 1.50 mm. The optimized microchip design was subsequently used in the analysis of four groups of analytes - inorganic cations, amino acids, aminoglycosides antibiotics, and biomarkers. Based on the preliminary results obtained, the detection limits were in the range of 0.4-0.7 mg/L for the inorganic cations and 1.5-15 mg/L for the amino compounds.  相似文献   

18.
A new SU-8 based microchip capillary electrophoresis (MCE) device has been developed for the first time with integrated electrochemical detection. Embedded electrophoretic microchannels have been fabricated with a multilayer technology based on bonding and releasing steps of stacked SU-8 films. This technology has allowed the monolithic integration in the device of the electrochemical detection system based on platinum electrodes. The fabrication of the chips presented in this work is totally compatible with reel-to-reel techniques, which guarantee a low cost and high reliability production. The influence of relevant experimental variables, such as the separation voltage and detection potential, has been studied on the SU-8 microchip with an attractive analytical performance. Thus, the effective electrical isolation of the end-channel amperometric detector has been also demonstrated. The good performance of the SU-8 device has been proven for separation and detection of the neurotransmitters, dopamine (DA) and epinephrine (EP). High efficiency (30,000-80,000 N/m), excellent precision, good detection limit (450 nM) and resolution (0.90-1.30) has been achieved on the SU-8 microchip. These SU-8 devices have shown a better performance than commercial Topas (thermoplastic olefin polymer of amorphous structure) microchips. The low cost and versatile SU-8 microchip with integrated platinum film electrochemical detector holds great promise for high-volume production of disposable microfluidic analytical devices.  相似文献   

19.
IntroductionSineHjerenintroduceditinl967,capillaryelectrophoresis(CE)hasbecomeapowerfulanalyticaltool.Becauseithasidealdetectionlimits,smallsampleintIoductionandhighseparationefficiency,CEhasbeenappliedinmanyareasincludingchemistry,biology,medicineandenvironmentalscience,etc.InCEtechnique,owingtoextremelysmallsampleintroductionandverythincapillaries,thedetectorsmustpossessthefeaturesofhigh-sensitivity,high-reso1ution,rapidresponseandon-line.Forthisreason,developingdetectivemethodsisaveryim…  相似文献   

20.
Integrated solid-phase extraction-zone electrophoresis (SPE-ZE) device has been designed and fabricated on microchip. The structures were fabricated by using multiple layers of SU-8 polymer with a novel technique that enables easy alignment and high yield of the chips. SU-8 adhesive bonding has two major advantages: it enables bonding of high aspect ratio pillars and it results in fully SU-8 microchannels with uniform electrokinetic flow properties. The SPE-ZE device has a fluidic reservoir with 15:1 high aspect ratio pillars for bead filters that act as a SPE part in the chip structure. The separation unit is a 25 mm long electrophoresis channel starting from the outlet of SPE reservoir. Argon laser-induced fluorescence (LIF) detector was used to monitor simultaneously the SPE reservoir and the detection site at the end of the electrophoresis channel. Flow characteristics and electric field distributions were simulated with Femlab software. Fluorescein was used as the analyte for detecting the operational performance of the chip. Adsorption, bead rinsing, elution and detection were tested to verify functioning of the chip design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号