首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider inexact linear equations y ≈ Φx where y is a given vector in ?n, Φ is a given n × m matrix, and we wish to find x0,? as sparse as possible while obeying ‖y ? Φx0,?2 ≤ ?. In general, this requires combinatorial optimization and so is considered intractable. On the other hand, the ??1‐minimization problem is convex and is considered tractable. We show that for most Φ, if the optimally sparse approximation x0,? is sufficiently sparse, then the solution x1,? of the ??1‐minimization problem is a good approximation to x0,?. We suppose that the columns of Φ are normalized to the unit ??2‐norm, and we place uniform measure on such Φ. We study the underdetermined case where m ~ τn and τ > 1, and prove the existence of ρ = ρ(τ) > 0 and C = C(ρ, τ) so that for large n and for all Φ's except a negligible fraction, the following approximate sparse solution property of Φ holds: for every y having an approximationy ? Φx02 ≤ ? by a coefficient vector x0 ∈ ?m with fewer than ρ · n nonzeros, This has two implications. First, for most Φ, whenever the combinatorial optimization result x0,? would be very sparse, x1,? is a good approximation to x0,?. Second, suppose we are given noisy data obeying y = Φx0 + z where the unknown x0 is known to be sparse and the noise ‖z2 ≤ ?. For most Φ, noise‐tolerant ??1‐minimization will stably recover x0 from y in the presence of noise z. We also study the barely determined case m = n and reach parallel conclusions by slightly different arguments. Proof techniques include the use of almost‐spherical sections in Banach space theory and concentration of measure for eigenvalues of random matrices. © 2006 Wiley Periodicals, Inc.  相似文献   

2.
We consider linear equations y = Φx where y is a given vector in ?n and Φ is a given n × m matrix with n < m ≤ τn, and we wish to solve for x ∈ ?m. We suppose that the columns of Φ are normalized to the unit ??2‐norm, and we place uniform measure on such Φ. We prove the existence of ρ = ρ(τ) > 0 so that for large n and for all Φ's except a negligible fraction, the following property holds: For every y having a representation y = Φx0 by a coefficient vector x0 ∈ ?m with fewer than ρ · n nonzeros, the solution x1 of the ??1‐minimization problem is unique and equal to x0. In contrast, heuristic attempts to sparsely solve such systems—greedy algorithms and thresholding—perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almost‐spherical sections in Banach space theory, and deviation bounds for the eigenvalues of random Wishart matrices. © 2006 Wiley Periodicals, Inc.  相似文献   

3.
Let Ls 1 (s ∈ ?) be the s-th differential group, that is the set {(x1,…,xs): x1 ≠ 0, xn ∈ K, n =1,2,…,s} (K ∈ {?,?}) together with the group operation which describes the chain rules (up to order s) for Cs-functions with fixed point 0. We consider homomorphisms Φs, Φs = (f1,…,fs) from an abelian group (G,+) into Ls 1 such that f1 = 1, f2 = … = fp+2 = 0, 0p+2 ≠ 0 for a fixed, but arbitrary p ≥ 0 such that p + 2 ≤ s (then fp+2 is necessarily a homomorphism from (G, +) to (K, +). Let l ∈ ? or l = ∞. We present a criterion for the extensibility of Φs to a homomorphism Φs+l from (G, +) to Ls+1 1 (L 1, if l = ∞), by proving that such an extension (continuation) exists iff the component functions fn of Φs with s - p ≤ n ≤ min(s - p + l - 1,s) are certain polynomials in fP+2 (see Theorem 1). We also formulate the problem in the language of truncated formal power series in one indeterminate X over K. The somewhat easier situation f 1 ≠ 1 will be studied in a separate paper.  相似文献   

4.
Given a large positive number x and a positive integer k, we denote by Qk(x) the set of congruent elliptic curves E(n): y2= z3- n2 z with positive square-free integers n x congruent to one modulo eight,having k prime factors and each prime factor congruent to one modulo four. We obtain the asymptotic formula for the number of congruent elliptic curves E(n)∈ Qk(x) with Mordell-Weil ranks zero and 2-primary part of Shafarevich-Tate groups isomorphic to(Z/2Z)2. We also get a lower bound for the number of E(n)∈ Qk(x)with Mordell-Weil ranks zero and 2-primary part of Shafarevich-Tate groups isomorphic to(Z/2Z)4. The key ingredient of the proof of these results is an independence property of residue symbols. This property roughly says that the number of positive square-free integers n x with k prime factors and residue symbols(quadratic and quartic) among its prime factors being given compatible values does not depend on the actual values.  相似文献   

5.
Let L be a lattice of finite length, ξ = (x 1,…, x k )∈L k , and yL. The remoteness r(y, ξ) of y from ξ is d(y, x 1)+?+d(y, x k ), where d stands for the minimum path length distance in the covering graph of L. Assume, in addition, that L is a graded planar lattice. We prove that whenever r(y, ξ) ≤ r(z, ξ) for all zL, then yx 1∨?∨x k . In other words, L satisfies the so-called c 1 -median property.  相似文献   

6.
Let N′(k) denote the number of coprime integral solutions x, y of y2 = x3 + k. It is shown that lim supk→∞N′(k) ≥ 12.  相似文献   

7.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

8.
In this paper,we consider the following indefinite complex quadratic maximization problem: maximize zHQz,subject to zk ∈ C and zkm = 1,k = 1,...,n,where Q is a Hermitian matrix with trQ = 0,z ∈ Cn is the decision vector,and m 3.An (1/log n) approximation algorithm is presented for such problem.Furthermore,we consider the above problem where the objective matrix Q is in bilinear form,in which case a 0.7118 cos mπ 2approximation algorithm can be constructed.In the context of quadratic optimization,various extensions and connections of the model are discussed.  相似文献   

9.
Let L be a locally finite lattice. An order function ν on L is a function defined on pairs of elements x, y (with xy) in L such that ν(x, y) = ν(x, z) ν(z, y). The Rédei zeta function of L is given by ?(s; L) = Σx∈Lμ(Ô, x) ν(Ô, x)?s. It generalizes the following functions: the chromatic polynomial of a graph, the characteristic polynomial of a lattice, the inverse of the Dedekind zeta function of a number field, the inverse of the Weil zeta function for a variety over a finite field, Philip Hall's φ-function for a group and Rédei's zeta function for an abelian group. Moreover, the paradigmatic problem in all these areas can be stated in terms of the location of the zeroes of the Rédei zeta function.  相似文献   

10.
《Journal of Number Theory》1987,26(3):325-367
Let S be the set of all positive integers with prime divisors from a fixed finite set of primes. Algorithms are given for solving the diophantine inequality 0< xy < yδ in x, yS for fixed δ ∈ (0, 1), and for the diophantine equation x + y = z in x, y, zS. The method is based on multi-dimensional diophantine approximation, in the real and p-adic case, respectively. The main computational tool is the L3-Basis Reduction Algorithm. Elaborate examples are presented.  相似文献   

11.
Let (Mr)r∈? 0 be a logarithmically convex sequence of positive numbers which verifies M0 = 1 as well as Mr 1 for every r ∈ ? and defines a non quasi-analytic class. Let moreover F be a closed proper subset of ?n. Then for every function ? on ?n belonging to the non quasi-analytic (Mr)-class of Roumieu type, there is an element g of the same class which is analytic on ?n F and such that Dα ?(x) = Dαg(x) for every σ ∈ ?0 n SBAP and xF.  相似文献   

12.
The following results for proper quasi‐symmetric designs with non‐zero intersection numbers x,y and λ > 1 are proved.
  • (1) Let D be a quasi‐symmetric design with z = y ? x and v ≥ 2k. If x ≥ 1 + z + z3 then λ < x + 1 + z + z3.
  • (2) Let D be a quasi‐symmetric design with intersection numbers x, y and y ? x = 1. Then D is a design with parameters v = (1 + m) (2 + m)/2, b = (2 + m) (3 + m)/2, r = m + 3, k = m + 1, λ = 2, x = 1, y = 2 and m = 2,3,… or complement of one of these design or D is a design with parameters v = 5, b = 10, r = 6, k = 3, λ = 3, and x = 1, y = 2.
  • (3) Let D be a triangle free quasi‐symmetric design with z = y ? x and v ≥ 2k, then xz + z2.
  • (4) For fixed z ≥ 1 there exist finitely many triangle free quasi‐symmetric designs non‐zero intersection numbers x, y = x + z.
  • (5) There do not exist triangle free quasi‐symmetric designs with non‐zero intersection numbers x, y = x + 2.
© 2006 Wiley Periodicals, Inc. J Combin Designs 15: 49–60, 2007  相似文献   

13.
14.
We prove that if a functionfC (1) (I),I: = [?1, 1], changes its signs times (s ∈ ?) within the intervalI, then, for everyn > C, whereC is a constant which depends only on the set of points at which the function changes its sign, andk ∈ ?, there exists an algebraic polynomialP n =P n (x) of degree ≤n which locally inherits the sign off(x) and satisfies the inequality $$\left| {f\left( x \right) - P_n \left( x \right)} \right| \leqslant c\left( {s,k} \right)\left( {\frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right)\omega _k \left( {f'; \frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right), x \in I$$ , where ω k (f′;t) is thekth modulus of continuity of the functionf’. It is also shown that iffC (I) andf(x) ≥ 0,xI then, for anynk ? 1, there exists a polynomialP n =P n (x) of degree ≤n such thatP n (x) ≥ 0,xI, and |f(x) ?P n (x)| ≤c(k k (f;n ?2 +n ?1 √1 ?x 2),xI.  相似文献   

15.
Let Ω ?C be an open set with simply connected components and suppose that the functionφ is holomorphic on Ω. We prove the existence of a sequence {φ (?n)} ofn-fold antiderivatives (i.e., we haveφ (0)(z)∶=φ(z) andφ (?n)(z)= (?n?1)(z)/dz for alln ∈ N0 and z ∈ Ω) such that the following properties hold:
  1. For any compact setB ?Ω with connected complement and any functionf that is continuous onB and holomorphic in its interior, there exists a sequence {n k} such that {φ?nk} converges tof uniformly onB.
  2. For any open setU ?Ω with simply connected components and any functionf that is holomorphic onU, there exists a sequence {m k} such that {φ?mk} converges tof compactly onU.
  3. For any measurable setE ?Ω and any functionf that is measurable onE, there exists a sequence {p k} such that {φ (-Pk)} converges tof almost everywhere onE.
  相似文献   

16.
Let c(n, q) be the number of connected labeled graphs with n vertices and q ≤ N = (2n ) edges. Let x = q/n and k = q ? n. We determine functions wk ? 1. a(x) and φ(x) such that c(n, q) ? wk(qN)enφ(x)+a(x) uniformly for all n and qn. If ? > 0 is fixed, n→ ∞ and 4q > (1 + ?)n log n, this formula simplifies to c(n, q) ? (Nq) exp(–ne?2q/n). on the other hand, if k = o(n1/2), this formula simplifies to c(n, n + k) ? 1/2 wk (3/π)1/2 (e/12k)k/2nn?(3k?1)/2.  相似文献   

17.
Let X, X1, X2, … be i.i.d. random variables with nondegenerate common distribution function F, satisfying EX = 0, EX2 = 1. Let Xi and Mn = max{Xi, 1 ≤ in }. Suppose there exists constants an > 0, bnR and a nondegenrate distribution G (y) such that Then, we have almost surely, where f (x, y) denotes the bounded Lipschitz 1 function and Φ(x) is the standard normal distribution function (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Let X be a convex subset of a finite-dimensional real vector space. A function M: X k → X is called a strict mean value, if M(x1,…, xk) lies in the convex hull of x1,…, xk), but does not coincide with one of its vertices. A sequence (xn)n∈ ? in X is called M-recursive if xn+k = M(xn, xn+1,…, xn+k?1) for all n. We prove that for a continuous strict mean value M every M-recursive sequence is convergent. We give a necessary and sufficient condition for a convergent sequence in X to be M-recursive for some continuous strict mean value M, and we characterize its limit by a functional equation. 39 B 72, 39 B 52, 40 A 05.  相似文献   

19.
In this article the following class of partial differential operators is examined for local solvability: Let P(X, Y) be a homogeneous polynomial of degree n ≥ 2 in the non-commuting variables X and Y. Suppose that the complex polynomial P(iz, 1) has distinct roots and that P(z, 0) = zn. The operators which we investigate are of the form P(X, Y) where X = δx and Y = δy + xδw for variables (x, y, w) ∈ ?3. We find that the operators P (X, Y) are locally solvable if and only if the kernels of the ordinary differential operators P(iδx, ± x)* contain no Schwartz-class functions other than the zero function. The proof of this theorem involves the construction of a parametrix along with invariance properties of Heisenberg group operators and the application of Sobolev-space inequalities by Hörmander as necessary conditions for local solvability.  相似文献   

20.
In the space A (θ) of all one-valued functions f(z) analytic in an arbitrary region G ? ? (0 ∈ G) with the topology of compact convergence, we establish necessary and sufficient conditions for the equivalence of the operators L 1 n z n Δ n + ... + α1 zΔ+α0 E and L 2= z n a n (z n + ... + za 1(z)Δ+a 0(z)E, where δ: (Δ?)(z)=(f(z)-?(0))/z is the Pommier operator in A(G), n ∈ ?, α n ∈ ?, a k (z) ∈ A(G), 0≤kn, and the following condition is satisfied: Σ j=s n?1 α j+1 ∈ 0, s=0,1,...,n?1. We also prove that the operators z s+1Δ+β(z)E, β(z) ∈ A R , s ∈ ?, and z s+1 are equivalent in the spaces A R, 0?R?-∞, if and only if β(z) = 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号