首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper concerns the stochastic Runge-Kutta (SRK) methods with high strong order for solving the Stratonovich stochastic differential equations (SDEs) with scalar noise. Firstly, the new SRK methods with strong order 1.5 or 2.0 for the Stratonovich SDEs with scalar noise are constructed by applying colored rooted tree analysis and the theorem of order conditions for SRK methods proposed by Rößler (SIAM J. Numer. Anal. 48(3), 922–952, 2010). Secondly, a specific SRK method with strong order 2.0 for the Stratonovich SDEs whose drift term vanishes is proposed. And another specific SRK method with strong order 1.5 for the Stratonovich SDEs whose drift and diffusion terms satisfy the commutativity condition is proposed. The two specific SRK methods need only to use one random variable and do not need to simulate the multiple Stratonovich stochastic integrals. Finally, the numerical results show that performance of our methods is better than those of well-known SRK methods with strong order 1.0 or 1.5.  相似文献   

2.
Andreas Rößler 《PAMM》2005,5(1):817-818
A new class of stochastic Runge-Kutta (SRK) methods for the strong approximation of It ô stochastic differential equation systems w.r.t. an one-dimensionalWiener process is introduced. Some coefficients for a SRK method converging at least with order 1.5 in the strong sense are presented. Further, a special SRK scheme having deterministic order 4.0 is proposed for stochastic differential equations with small noise. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We introduce two drift-diagonally-implicit and derivative-free integrators for stiff systems of Itô stochastic differential equations with general non-commutative noise which have weak order 2 and deterministic order 2, 3, respectively. The methods are shown to be mean-square A-stable for the usual complex scalar linear test problem with multiplicative noise and improve significantly the stability properties of the drift-diagonally-implicit methods previously introduced (Debrabant and Rößler, Appl. Numer. Math. 59(3–4):595–607, 2009).  相似文献   

4.
It is well known that the numerical solution of stiff stochastic ordinary differential equations leads to a step size reduction when explicit methods are used. This has led to a plethora of implicit or semi-implicit methods with a wide variety of stability properties. However, for stiff stochastic problems in which the eigenvalues of a drift term lie near the negative real axis, such as those arising from stochastic partial differential equations, explicit methods with extended stability regions can be very effective. In the present paper our aim is to derive explicit Runge–Kutta schemes for non-commutative Stratonovich stochastic differential equations, which are of weak order two and which have large stability regions. This will be achieved by the use of a technique in Chebyshev methods for ordinary differential equations.  相似文献   

5.
In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if ans-stage SRK contains Stratonovich integrals up to orderp then the strong order of the SRK cannot exceed min{(p+1)/2, (s−1)/2},p≥2,s≥3 or 1 ifp=1.  相似文献   

6.
The problem of solving stochastic differential-algebraic equations (SDAEs) of index 1 with a scalar driving Wiener process is considered. Recently, the authors have proposed a class of stiffly accurate stochastic Runge–Kutta (SRK) methods that do not involve any pseudo-inverses or projectors for the numerical solution of the problem. Based on this class of approximation methods, classifications for the coefficients of stiffly accurate SRK methods attaining strong order 0.5 as well as strong order 1.0 are calculated. Further, the mean-square stability of the considered class of SRK methods is analyzed. As the main result, families of A-stable efficient order 0.5 and 1.0 stiffly accurate SRK methods with a minimal number of stages for SDEs as well as for SDAEs are presented.  相似文献   

7.
In this paper we discuss three-stage stochastic Runge–Kutta (SRK) methods with strong order 1.0 for a strong solution of Stratonovich stochastic differential equations (SDEs). Higher deterministic order is considered. Two methods, a three-stage explicit (E3) method and a three-stage semi-implicit (SI3) method, are constructed in this paper. The stability properties and numerical results show the effectiveness of these methods in the pathwise approximation of several standard test problems.  相似文献   

8.
In this paper, the linear stability of symplectic methods for Hamiltonian systems is studied. In par- ticular, three classes of symplectic methods are considered: symplectic Runge-Kutta (SRK) methods, symplectic partitioned Runge-Kutta (SPRK) methods and the composition methods based on SRK or SPRK methods. It is shown that the SRK methods and their compositions preserve the ellipticity of equilibrium points uncondi- tionally, whereas the SPRK methods and their compositions have some restrictions on the time-step.  相似文献   

9.
In this paper, we first investigate the stability of two weak second order methods introduced by Debrabant and Rößler (Appl Numer Math 59:582–594, 2009) and Platen (Math Comput Simulation 38:69–76, 1995). We then propose a new weak second order predictor-corrector method, with an improved stability properties, based on the Rößler’s method as the predictor and the implicit method of Platen as the corrector. The stability functions of these methods, applied to a scalar linear test equation with multiplicative noise, are determined and their regions of stability are then compared with the corresponding stability regions of the test equation. Furthermore, we also investigate mean square stability (MS-stability) of these methods applied to a linear Itô 2-dimensional stochastic differential test equation. Numerical examples will be presented to support the theoretical results.  相似文献   

10.
Abstract

A general class of stochastic Runge-Kutta methods for the weak approximation of Itô and Stratonovich stochastic differential equations with a multi-dimensional Wiener process is introduced. Colored rooted trees are used to derive an expansion of the solution process and of the approximation process calculated with the stochastic Runge-Kutta method. A theorem on general order conditions for the coefficients and the random variables of the stochastic Runge-Kutta method is proved by rooted tree analysis. This theorem can be applied for the derivation of stochastic Runge-Kutta methods converging with an arbitrarily high order.  相似文献   

11.
In this paper we construct implicit stochastic Runge–Kutta (SRK) methods for solving stochastic differential equations of Stratonovich type. Instead of using the increment of a Wiener process, modified random variables are used. We give convergence conditions of the SRK methods with these modified random variables. In particular, the truncated random variable is used. We present a two-stage stiffly accurate diagonal implicit SRK (SADISRK2) method with strong order 1.0 which has better numerical behaviour than extant methods. We also construct a five-stage diagonal implicit SRK method and a six-stage stiffly accurate diagonal implicit SRK method with strong order 1.5. The mean-square and asymptotic stability properties of the trapezoidal method and the SADISRK2 method are analysed and compared with an explicit method and a semi-implicit method. Numerical results are reported for confirming convergence properties and for comparing the numerical behaviour of these methods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In this paper we discuss two-stage diagonally implicit stochastic Runge-Kutta methods with strong order 1.0 for strong solutions of Stratonovich stochastic differential equations. Five stochastic Runge-Kutta methods are presented in this paper. They are an explicit method with a large MS-stability region, a semi-implicit method with minimum principal error coefficients, a semi-implicit method with a large MS-stability region, an implicit method with minimum principal error coefficients and another implicit method. We also consider composite stochastic Runge-Kutta methods which are the combination of semi-implicit Runge-Kutta methods and implicit Runge-Kutta methods. Two composite methods are presented in this paper. Numerical results are reported to compare the convergence properties and stability properties of these stochastic Runge-Kutta methods.  相似文献   

13.
A new class of third order Runge-Kutta methods for stochastic differential equations with additive noise is introduced. In contrast to Platen’s method, which to the knowledge of the author has been up to now the only known third order Runge-Kutta scheme for weak approximation, the new class of methods affords less random variable evaluations and is also applicable to SDEs with multidimensional noise. Order conditions up to order three are calculated and coefficients of a four stage third order method are given. This method has deterministic order four and minimized error constants, and needs in addition less function evaluations than the method of Platen. Applied to some examples, the new method is compared numerically with Platen’s method and some well known second order methods and yields very promising results.  相似文献   

14.
In this paper we consider Runge-Kutta methods for jump-diffusion differential equations. We present a study of their mean-square convergence properties for problems with multiplicative noise. We are concerned with two classes of Runge-Kutta methods. First, we analyse schemes where the drift is approximated by a Runge-Kutta ansatz and the diffusion and jump part by a Maruyama term and second we discuss improved methods where mixed stochastic integrals are incorporated in the approximation of the next time step as well as the stage values of the Runge-Kutta ansatz for the drift. The second class of methods are specifically developed to improve the accuracy behaviour of problems with small noise. We present results showing when the implicit stochastic equations defining the stage values of the Runge-Kutta methods are uniquely solvable. Finally, simulation results illustrate the theoretical findings.  相似文献   

15.
The class of stochastic Runge–Kutta methods for stochastic differential equations due to Rößler is considered. Coefficient families of diagonally drift-implicit stochastic Runge–Kutta (DDISRK) methods of weak order one and two are calculated. Their asymptotic stability as well as mean-square stability (MS-stability) properties are studied for a linear stochastic test equation with multiplicative noise. The stability functions for the DDISRK methods are determined and their domains of stability are compared to the corresponding domain of stability of the considered test equation. Stability regions are presented for various coefficients of the families of DDISRK methods in order to determine step size restrictions such that the numerical approximation reproduces the characteristics of the solution process.  相似文献   

16.
Runge-Kutta type methods for Volterra integral equations of the second kind are introduced which contain additional terms in order to improve the stability behaviour. The order of convergence is given and the stability region is derived for the basic test kernelK=af.  相似文献   

17.
Summary. In this paper asymptotic stability properties of Runge-Kutta (R-K) methods for delay differential equations (DDEs) are considered with respect to the following test equation: where and is a continuous real-valued function. In the last few years, stability properties of R-K methods applied to DDEs have been studied by numerous authors who have considered regions of asymptotic stability for “any positive delay” (and thus independent of the specific value of ). In this work we direct attention at the dependence of stability regions on a fixed delay . In particular, natural Runge-Kutta methods for DDEs are extensively examined. Received April 15, 1996 / Revised version received August 8, 1996  相似文献   

18.
This paper is concerned with the numerical solution of delay differential equations(DDEs). We focus on the stability behaviour of Runge-Kutta methods for nonlinear DDEs. The new concepts of GR(l)-stability, GAR(l)-stability and weak GAR(l)-stability are further introduced. We investigate these stability properties for (k, l)-algebraically stable Runge-Kutta methods with a piecewise constant or linear interpolation procedure.  相似文献   

19.
A class ofimplicit Runge-Kutta schemes for stochastic differential equations affected bymultiplicative Gaussian white noise is shown to be optimal with respect to global order of convergence in quadratic mean. A test equation is proposed in order to investigate the stability of discretization methods for systems of this kind. Herestability is intended in a truly probabilistic sense, as opposed to the recently introduced extension of A-stability to the stochastic context, given for systems with additive noise. Stability regions for the optimal class are also given.Partially supported by the Italian Consiglio Nazionale delle Ricerche.  相似文献   

20.
Numerical stability of both explicit and implicit Runge-Kutta methods for solving ordinary differential equations with an additive noise term is studied. The concept of numerical stability of deterministic schemes is extended to the stochastic case, and a stochastic analogue of Dahlquist'sA-stability is proposed. It is shown that the discretization of the drift term alone controls theA-stability of the whole scheme. The quantitative effect of implicitness uponA-stability is also investigated, and stability regions are given for a family of implicit Runge-Kutta methods with optimal order of convergence.This author was partially supported by the Italian Consiglio Nazionale delle Ricerche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号