首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
俞宇颖  习锋  戴诚达  蔡灵仓  谭华  李雪梅  胡昌明 《物理学报》2012,61(19):196202-196202
进行了10—27 GPa应力范围内Zr51Ti5Ni10Cu25Al9金属玻璃的平面冲击实验以研究其高压-高应变率加载下的塑性行为.由样品自由面粒子速度剖面的分析获得了冲击加载过程的轴向应力,并通过轴向应力与静水压线的比较获得剪应力.实验结果表明,尽管存在明显的松弛效应,但Zr基金属玻璃的Hugoniot弹性极限随着冲击应力的增加而增加.然而,塑性波阵面上的剪应力则显示先硬化而后软化现象,而且软化的幅度随冲击应力的增加而增加.冲击加载下Zr基金属玻璃的上述剪应力变化特征与分子动力学模拟结果比较一致,但与压剪实验结果和一维应力冲击实验结果明显不同.  相似文献   

2.
The ferrobielastic properties (ferroic properties of the second order) earlier theoretically predicted for lead germanate uniaxial ferroelectric crystals are justified experimentally. It is demonstrated that single-domain samples are formed upon cooling to temperatures below the Curie point under uniaxial mechanical stresses corresponding to a combination of mechanical stresses σ11σ13 or σ22σ23. The macroscopic mechanism of this phenomenon is considered.  相似文献   

3.
We investigate the T(3)-gauge theory of static dislocations in continuous solids. We use the most general linear constitutive relations in terms of the elastic distortion tensor and dislocation density tensor for the force and pseudomoment stresses of an isotropic solid. The constitutive relations contain six material parameters. In this theory, both the force and pseudomoment stresses are asymmetric. The theory possesses four characteristic lengths ?1, ?2, ?3 and ?4, which are given explicitly. We first derive the three-dimensional Green tensor of the master equation for the force stresses in the translational gauge theory of dislocations. We then investigate the situation of generalized plane strain (anti-plane strain and plane strain). Using the stress function method, we find modified stress functions for screw and edge dislocations. The solution of the screw dislocation is given in terms of one independent length ?1 = ?4. For the problem of an edge dislocation, only two characteristic lengths ?2 and ?3 arise with one of them being the same ?2 = ?1 as for the screw dislocation. Thus, this theory possesses only two independent lengths for generalized plane strain. If the two lengths ?2 and ?3 of an edge dislocation are equal, we obtain an edge dislocation, which is the gauge theoretical version of a modified Volterra edge dislocation. In the case of symmetric stresses, we recover well-known results obtained earlier.  相似文献   

4.
The structural and magnetic properties of amorphous ferromagnetic microwires can undergo significant measurements under the action of external mechanical stresses and heat treatment. The study of transformations occurring in this case is important for designing various sensors of mechanical stresses, loading, and temperature and also for inducing in the wires a certain type of magnetic anisotropy that plays a significant role in the realization of various effects in them. In this work, the influence of external stresses and annealing on the processes of the magnetization and the magnetic impedance of Co71Fe5B11Si10Cr3 microwires having a low positive magnetostriction (~10-8) in amorphous state has been studied. The influence of external stresses leads to a sharp change in the character of the magnetization reversal curve, which was due to the change in the sign of the magnetostriction and the type of magnetic anisotropy. The amplitude of higher harmonics and the value of the magnetic impedance, respectively, are sensitive to mechanical stresses. Elastic stresses in the wires with a partial crystallization do not lead to a marked change in the magnetic properties; however, annealing can lead to a substantial increase in the axial magnetic anisotropy of the wires existing in the stressed state. The experimental results are analyzed in the framework of a magnetostriction model of induced magnetic anisotropy.  相似文献   

5.
We studied the domain wall (DW) propagation of magnetically-bistable Fe–Co-rich microwires paying attention to the effect of applied and internal stresses. Magnetic field, H, dependences of DW velocity, v, were measured in Co41.7Fe36.4Si10.1B11.8 microwires with metallic nucleus diameters (from 13 μm to 18 μm) and with different ρ-ratio between the metallic nucleus diameter, d, and total microwire diameter, D. DW velocity decreased under the application of stresses. From measured dependences we evaluated DW mobility, S, dependence on the applied stresses. The results obtained for Co41.7Fe36.4Si10.1B11.8 sample show that S decreases with the increasing of applied stresses, σa. The observed dependences manifest that increasing of magnetoelastic anisotropy results in the decreasing of DW mobility and DW velocity  相似文献   

6.
The effective internal shear stresses arising during unloading of bulk Pd-Cu-Ni-P metallic glasses deformed under conditions of homogeneous flow below the glass transition temperature T g have been determined using measurements of the torque relaxation. It has been shown that the level of effective internal stresses gradually decreases with increasing temperature and approaches zero at T ?? T g . Possible mechanisms of the formation of internal stresses with variations in the experimental conditions have been discussed.  相似文献   

7.
《Composite Interfaces》2013,20(4):379-409
In composites, debonding at the fiber–matrix interface and matrix cracking due to loading or residual stresses can effect the mechanical properties. Here three different architectures — 3-directional orthogonal, 3-directional 8-harness satin weave and 4-directional in-plane multidirectional composites — are investigated and their effective properties are determined for different volume fractions using unit cell modeling with appropriate periodic boundary conditions. A cohesive zone model (CZM) has been used to simulate the interfacial debonding, and an octahedral shear stress failure criterion is used for the matrix cracking. The debonding and matrix cracking have significant effect on the mechanical properties of the composite. As strain increases, debonding increases, which produces a significant reduction in all the moduli of the composite. In the presence of residual stresses, debonding and resulting deterioration in properties occurs at much lower strains. Debonding accompanied with matrix cracking leads to further deterioration in the properties. The interfacial strength has a significant effect on debonding initiation and mechanical properties in the absence of residual stresses, whereas, in the presence of residual stresses, there is no effect on mechanical properties. A comparison of predicted results with experimental results shows that, while the tensile moduli E 11, E 33and shear modulus G 12 match well, the predicted shear modulus G 13 is much lower.  相似文献   

8.
The influence of different heat shielding constructions on the distribution of temperature and thermoelastic and residual stresses in growing basal-plane-faceted sapphire ribbons (Al2O3) is studied. It is shown that inclined shields decrease thermoelastic stresses owing to the redistribution of heat fluxes from a heater to a ribbon, which allows growing block-free basal-plane-faceted sapphire ribbons.  相似文献   

9.
The effect of temperature and elastic tensile stresses on the magnetoimpedance of an amorphous Vitrovac 6025Z (Fe4CO67Mo1.5Si16.5B11) foil is studied. Two temperature ranges (20–70 and 70–220°C) in which the effect of elastic tensile stresses on the magnetoimpedance has different characters are detected. The existence of these two temperature ranges is shown to be caused by a change in the sign of a magnetostriction constant at 70°C.  相似文献   

10.
A study is reported on the effect of temperature and elastic vibration amplitude on Young’s modulus E and internal friction in Si3N4 and BN ceramic samples and Si3N4/BN monoliths obtained by hot pressing of BN-coated Si3N4 fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20–600°C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young’s modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.  相似文献   

11.
The influence of uniaxial mechanical stresses directed along the principal crystallophysical axes on refractiveindex temperature dependences in K2ZnCl4 crystals was studied. It is established that the refractive indices ni are quite sensitive to uniaxial stresses. Significant baric shifts of the paraphase–incommensurate–commensurate phase transition points to different temperature regions were observed, which is due to the effect of the uniaxial stress on the K2ZnCl4 crystal structure. It is found that applying uniaxial pressure increases the value of the temperature hysteresis of the commensurate–incommensurate phase transition.  相似文献   

12.
Possibility of the ferroelastoelectric behavior manifestations in a uniaxial ferroelectric TGS crystal was investigated. Analysis of the spontaneous piezoelectric moduli tensors for each of the 180°-domains formed as a result of the phase transition in TGS revealed possible directions for simultaneous application of the electric field and mechanical stresses to induce the switching effect in TGS. Influence of the uniaxial mechanical stresses σ11, σ22, σ33 on the parameters of saturated and unsaturated dielectric hysteresis loops in TGS is considered. It was found that a nontraditional E 3σ12 combination of fields may lead to the domain switching in TGS crystals.  相似文献   

13.
Nanodimensional ferroelectric heteroepitaxial Ba0.8Sr0.2TiO3 films grown by the layer-by-layer mechanism on MgO(100) substrates are examined by the X-ray diffraction and transmission electron microscopy methods. It is established that, when the thickness of the film changes, the stress relaxation proceeds via generation of misfit dislocations at the film-substrate interface. There exists a critical thickness (≈40 nm) of the film below and above which the film possesses tensile and compression stresses, respectively. Examples of how the stresses influence the insulating properties of the films are given.  相似文献   

14.
Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y2O3-stabilized ZrO2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.  相似文献   

15.
The effect of elastic stresses (compressive, tensile) on the magnetic properties of epitaxial GaMnAs layers prepared by laser deposition of solid-state targets in a gas atmosphere on different buffer sublayers (In x Ga1 − x As and In x Ga1 − x P) and substrates (GaAs, InP) has been investigated. It has been established from the investigations of magnetic-field dependences of the Hall resistance that all layers exhibit ferromagnetic properties with the Curie temperature ∼50 K. It has been shown that, in the case of tensile stresses in GaMnAs layers (In x Ga1 − x As and In x Ga1 − x P buffers and InP substrate), the anomalous Hall effect shape demonstrates a predominant orientation of the easy-magnetization axis in the growth direction, unlike the GaMnAs layers prepared on a GaAs substrate (with compressive stresses), which demonstrate the predominance of the component of the magnetization vector in the layer plane.  相似文献   

16.
F. R. N. Nabarro 《哲学杂志》2013,93(26):3047-3054

The analysis of thermal activation under shear stress in three- and even two-dimensional models presents unresolved problems. The analysis of one-dimensional models presented here may illuminate the study of more realistic models. For the model in which as many dislocations are poised for backward jumps as for forward jumps, the experimental activation volume V ?ea) under applied stresses close to σa is different from the true activation volume V(σ) evaluated at σ = σa. The relations between the two are developed. A model is then discussed in which fewer dislocations are available for backward than for forward jumps. Finally, the appropriateness of the hyperbolic sine approximation for moderately low stresses is defined and shown to be very limited.  相似文献   

17.
It has been studied how the conditions of machining and the elastic tensile stresses affect the magnetic properties of amorphous metal wires of composition Fe75Si10B15 produced by drawing from a melt. The magnetic characteristics of wires subjected to both thermal treatment and treatment with a continuous electric current of different magnitude have been investigated. The residual induction of wires is their magnetic parameter most sensitive to the conditions of treatment. The dependences of the residual induction on temperature and on the magnitude of the treating electric current are qualitatively similar. The greatest changes in residual induction are observed in the range of treating electric currents from 0.5 to 0.8 A, which can be associated with the processes of structural relaxation and crystallization occurring in the wires. The run of the dependence of the residual induction on the magnitude of tensile stresses is nonmonotonic in character and is determined by the level of internal hardening stresses of the test wires.  相似文献   

18.
The effect of stresses, appearing due to a difference between the temperature coefficients of linear expansion of a substrate and ferroelectric film, on the self-polarization is discussed using thin films of lead zirconate-titanate PbZrxTi1?xO3 (PZT) of different compositions as an example. It is assumed that the nature of self-polarization is connected with internal polarizing electric fields caused by the different density of charged surface states at the ferroelectric-layer interfaces, while tensile or compressive stresses are able only to change the polarization orientation, which causes the self-polarization to increase or decrease in magnitude. The problem of improving the efficiency of PZT films in infrared radiation detectors and memory devices is considered.  相似文献   

19.
The co-deformation of Cu–Ag or Cu–Nb composite wires used for high-field magnets has a number of important microstructural consequences, including the production of very-fine-scale structures, the development of very high internal surface-area-to-volume ratios during the drawing, and the storage of defects at interphase interfaces. In addition, the fabrication and co-deformation of the Cu and Ag or Nb, which differ in crystal structure, thermal expansion, elastic modulus and lattice parameter, lead to the development of short-wavelength internal stresses in both composites. In this paper, these internal stresses are characterized by neutron diffraction and transmission electron microscopy as a function of the imposed drawing strain. The internal stresses lead to important changes in the elastic–plastic response, which is related to both magnet design and service life. The second derivative ?2 σ/?2 ε of the stresses with respect to strain is used to describe the low-strain anelasticity of the composites. The internal stresses in Cu–Nb are higher than in Cu–Ag and, consequently, the absolute values of (?2 σ/?2 ε)Cu–Nb are higher than those of (?2 σ/?2 ε)Cu–Ag at low strains.  相似文献   

20.
EPR measurements on crystals of compressed tetragonal Rb2PbCu(NO2)6 and K2PbCu(NO2)6 subjected to uniaxial stress have been carried out at various temperatures. The results indicate that uniaxial stress can reorient the crystal axes in both compounds and that smaller stresses are required for Rb2PbCu(NO2)6 than for K2PbCu(NO2)6 at comparable temperatures. Larger stresses are required at lower temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号