首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The growth of matter perturbations in the f(R) model proposed by Starobinsky is studied in this paper. Three different parametric forms of the growth index are considered respectively, and constraints on the model are obtained at both the 1σ and 2σ confidence levels, by using the current observational data for the growth factor. It is found, for all the three parametric forms of the growth index examined, that the Starobinsky model is consistent with the observations only at the 2σ confidence level.  相似文献   

2.
In this paper, we propose a new unified dark fluid (UDF) model with equation of state (EoS) w(a)=?α/(β a ?n +1), which includes the generalized Chaplygin gas model (gGg) as its special case, where α, β and n are three positive numbers. It is clear that this model reduces to the gCg model with EoS w(a)=?B s /(B s +(1?B s )a ?3(1+α)), when α=1, β=(1?B s )/B s and n=3(1+α). By combination the cold dark matter and the cosmological constant, one can coin a EoS of unified dark fluid in the form of w(a)=?1/(1+(1?ΩΛ)a ?3Λ). With this observations, our proposed EoS provides a possible deviation from ΛCDM model when the model parameters α and n deviate from 1 and 3 respectively. By using the currently available cosmic observations from type Ia supernovae (SN Ia) Union2.1, baryon acoustic oscillation (BAO) and cosmic microwave background radiation (CMB), we test the viability of this model and detect the possible devotion from the ΛCDM model. The results show that the new UDF model fits the cosmic observation as well as that of the ΛCDM model and no deviation is found from the ΛCDM model in 3σ confidence level. However, our new UDF model can give a non-zero sound speed, as a contrast, which is zero for the ΛCDM model. We expect the large structure formation information can distinct the new UDF model from the ΛCDM model.  相似文献   

3.
We study one of the simplest covariant modified-gravity models based on the Dvali-Gabadadze-Porrati (DGP) brane cosmology, a self-accelerating universe. In this model gravitational leakage into extra dimensions is responsible of late-time acceleration. We mainly focus on the effects of the model parameters on the geometry and the age of universe. Also we investigate the evolution of matter density perturbations in the modified gravity model, and obtain an analytical expression for the growth index, f. We show that increasing leads to less growth of the density contrast δ, and also decreases the growth index. We give a fitting formula for the growth index at the present time and indicate that dominant term in this expression verifies the well-known approximation relation f≃Ω m γ . As the observational test, the new Supernova Type Ia (SNIa) Gold sample and Supernova Legacy Survey (SNLS) data, size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS), the position of the acoustic peak from the CMB observations and the Cluster Baryon Gas Mass Fraction (gas) are used to constrain the parameters of the DGP model. We also combine previous results with large scale structure formation (LSS) from the 2dFGRS survey. Finally to check the consistency of the DGP model, we compare the age of old cosmological objects with age of universe in this model.  相似文献   

4.
The interacting polytropic gas dark energy model is investigated from the viewpoint of statefinder diagnostic tool and ww′ analysis. The dependency of the statefinder parameters on the parameter of the model as well as the interaction parameter between dark matter and dark energy is calculated. We show that different values of the parameters of model and different values of interaction parameter result different evolutionary trajectories in sr and ww′ planes. The polytropic gas model of dark energy mimics the standard ΛCDM model at the early time.  相似文献   

5.
In this paper we proposed to use the group of analysis of symmetries of the dynamical system to describe the evolution of the Universe. This method is used in searching for the unknown equation of state. It is shown that group of symmetries enforce the form of the equation of state for noninteracting scaling multifluids. We showed that symmetries give rise to the equation of state in the form p =-Λ + w 1ρ(a) + w 2 a β + 0 and energy density ρ = Λ+ρ01 a -3(1+w)02 a α03 a -3, which is commonly used in cosmology. The FRW model filled with scaling fluid (called homological) is confronted with the observations of distant type Ia supernovae. We found the class of model parameters admissible by the statistical analysis of SNIa data.We showed that the model with scaling fluid fits well to supernovae data. We found that Ωm,0 ≃ 0.4 and n ≃ -1 (β = -3n), which can correspond to (hyper) phantom fluid, and to a high density universe. However if we assume prior that Ωm,0 = 0.3 then the favoured model is close to concordance ΛCDM model. Our results predict that in the considered model with scaling fluids distant type Ia supernovae should be brighter than in the ΛCDM model, while intermediate distant SNIa should be fainter than in the ΛCDM model. We also investigate whether the model with scaling fluid is actually preferred by data over ΛCDM model. As a result we find from the Akaike model selection criterion: it prefers the model with noninteracting scaling fluid.  相似文献   

6.
We investigate a second order parabolic parametrization,w(a)=wt+wa(at-a)2,which is a direct characterization of a possible turning in w.The cosmological consequence of this parametrization is explored by using the observational data of the SNLS3 type Ia supernovae sample,the CMB measurements from WMAP9 and Planck,the Hubble parameter measurement from HST,and the baryon acoustic oscillation(BAO)measurements from 6dFGS,BOSS DR11 and improved WiggleZ.We found the existence of a turning point in w at a~0.7 is favored at 1σCL.In the epoch 0.55a0.9,w-1 is favored at 1σCL,and this significance increases near a=0.8,reaching a 2σCL.The parabolic parametrization achieve equivalent performance to theΛCDM and Chevallier-Polarski-Linder(CPL)models when the Akaike information criterion was used to assess them.Our analysis shows the value of considering high order parametrizations when studying the cosmological constraints on w.  相似文献   

7.
We use recent data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the three-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z) data, to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z) data to constrain the parameterized deceleration parameter, we obtain the best-fit values of the transition redshift and current deceleration parameter z T=0.632−0.127+0.256 and q 0=−0.788−0.182+0.182. Furthermore, using the ΛCDM model and two model-independent equations of state of the dark energy, we find that the combined constraint from the 192 ESSENCE data and four other cosmological observations gives smaller values for Ω 0m and q 0, but a larger value for z T than the combined constraint from the 182 Gold data with four other observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally support three dark energy models: ΛCDM, w de(z)=w 0 and w de(z)=w 0+w 1ln (1+z).  相似文献   

8.
Recently Background Imaging of Cosmic Extragalactic Polarization(B2)discovered the relic gravitational waves at 7.0σconfidence level.However,the other cosmic microwave background(CMB)data,for example Planck data released in 2013(P13),prefer a much smaller amplitude of the primordial gravitational waves spectrum if a power-law spectrum of adiabatic scalar perturbations is assumed in the six-parameterΛCDM cosmology.In this paper,we explore whether the wCDM model and the running spectral index can relax the tension between B2 and other CMB data.Specifically we found that a positive running of running of spectral index is preferred at 1.7σlevel from the combination of B2,P13 and WMAP Polarization data.  相似文献   

9.
The Hubble constant H_0 represents the expansion rate of the Universe at present and is closely related to the age of the Universe.The accurate measurement of Hubble constant is crucial for modern cosmology.However,different cosmological observations give diverse values of Hubble constant in literature.Up to now,there are two methods to measure the Hubble constant.One is to directly measure the Hubble constant based on distance ladder estimates of Cepheids and so on.The other is to globally fit the Hubble constant under the assumption of a cosmological model,for example the "standard" ACDM model.Adopting the low-redshift observational datasets,including the Pantheon sample of Type Ⅰa supernovae,baryon acoustic oscillation measurements,and the tomographic Alcock-Paczynski method,we determine the Hubble constant to be 67.95_(-1.03)~(+0.78),69.81_(-2.70)~(+2.22) and66.75_(-4.23)~(+3.42) km s~(-1) Mpc~(-1) at 68% confidence level in the △CDM,wCDM and W_0W_a CDM models,respectively.Compared to the Hubble constant given by Riess et al.in 2019,we conclude that the new physics beyond the standard △CDM model is needed if all of these datasets are reliable.  相似文献   

10.
We compare the cosmological kinematics obtained via our law of linearly varying deceleration parameter (LVDP) with the kinematics obtained in the ΛCDM model. We show that the LVDP model is almost indistinguishable from the ΛCDM model up to the near future of our universe as far as the current observations are concerned, though their predictions differ tremendously into the far future.  相似文献   

11.
The cosmic acceleration is one of the most significant cosmological discoveries over the last century. The two categories of explanation are exotic component (dark energy) and modified gravity. We constrain the two types of model by a joint analysis with perturbation growth and direct H(z)H(z) data. Though the minimal χ2χ2 of the ΛCDM is almost the same as that of DGP, in the sense of consistency we find that the dark energy (ΛCDM) model is more favored through a detailed comparison with the corresponding parameters fitted by expansion data.  相似文献   

12.
In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space–time configurations in the Dvali–Gabadadze–Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space–time structure will open in terms of the 2σ confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z < 0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space–time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space–time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.  相似文献   

13.
We propose a phantom crossing Dvali–Gabadadze–Porrati (DGP) model. In our model, the effective equation of state of the DGP gravity crosses the phantom divide line. We demonstrate crossing of the phantom divide does not occur within the framework of the original DGP model or the DGP model developed by Dvali and Turner. By extending their model, we construct a model that realizes crossing of the phantom divide. We find that the smaller the value of the new introduced parameter β is, the older epoch crossing of the phantom divide occurs in. Our model can account for late-time acceleration of the universe without dark energy. We investigate and show the property of Phantom crossing DGP model.  相似文献   

14.
In this paper we put forward a running coupling scenario for describing the interaction between dark energy and dark matter. The dark sector interaction in our scenario is free of the assumption that the interaction term Q is proportional to the Hubble expansion rate and the energy densities of dark sectors. We only use a time-variable coupling b(a) (with a the scale factor of the universe) to characterize the interaction Q. We propose a parametrization form for the running coupling b(a)=b 0 a+b e (1−a) in which the early-time coupling is given by a constant b e , while today the coupling is given by another constant, b 0. For investigating the feature of the running coupling, we employ three dark energy models, namely, the cosmological constant model (w=−1), the constant w model (w=w 0), and the time-dependent w model (w(a)=w 0+w 1(1−a)). We constrain the models with the current observational data, including the type Ia supernova, the baryon acoustic oscillation, the cosmic microwave background, the Hubble expansion rate, and the X-ray gas mass fraction data. The fitting results indicate that a time-varying vacuum scenario is favored, in which the coupling b(z) crosses the noninteracting line (b=0) during the cosmological evolution and the sign changes from negative to positive. The crossing of the noninteracting line happens at around z=0.2–0.3, and the crossing behavior is favored at about 1σ confidence level. Our work implies that we should pay more attention to the time-varying vacuum model and seriously consider the phenomenological construction of a sign-changeable or oscillatory interaction between dark sectors.  相似文献   

15.
In this paper, we have considered the g-essence and its particular cases, k-essence and f-essence, within the framework of the Einstein-Cartan theory. We have shown that a single fermionic field can give rise to the accelerated expansion within the Einstein-Cartan theory. The exact analytical solution of the Einstein-Cartan-Dirac equations is found. This solution describes the accelerated expansion of the Universe with the equation of state parameter w = −1 as in the case of ΛCDM model.  相似文献   

16.
Classification of dark energy models in the plane of w   and ww, where w   is the dark energy equation of state and ww its time-derivative in units of the Hubble time, has been studied in the literature. We take the current SN Ia, CMB and BAO data, invoke a widely used parametrization of the dark energy equation of state, and obtain the constraints on the w–www plane. We find that several dark energy models including the cosmological constant, phantom, non-phantom barotropic fluids, and monotonic up-rolling quintessence are ruled out at the 68.3% confidence level based on the current observational data. On the other hand, down-rolling quintessence, including the thawing and the freezing models, is consistent with the current observations. All the above-mentioned models are still consistent with the data at the 95.4% confidence level.  相似文献   

17.
《Nuclear Physics B》1988,297(2):244-286
We present new, model-independent analyses of the observables in low-energy neutral-current experiments in the neutrino-hadron, neutrino-electron, electron/muon-hadron and electron- muon/tau sectors. We combine them with the latest experimental measurements of the W and Z masses to make global fits in the context of the standard model and of superstring-inspired models. We find in the standard model that sin 2θ w = 0.228 ± 0.004 if ϱ is fixed to be 1, whilst a two parameter fit yields sin 2θ w = 0.229 ± 0.006 and ϱ = 1.001 ± 0.007. This new value of sin 2θ w for ϱ = 1 lies uncomfortably outside the predicted region of the minimal SU(5) model, but is consistent with supersymmetric SU(5) models. In the minimal standard model with ϱ = 1 and equal Higgs and Z masses we find that mt<168 GeV at the 90% confidence level. We establish lower bounds on the masses of additional neutral gauge bosons Z′ in three superstring-inspired models and upper limits on their mixing with the standard model Z 0. In particular, we find that mZ′129 GeV at the 90% confidence level in a minimal rank-5 superstring-inspired model with canonical Higgs structure.  相似文献   

18.
Yasutomo Kajikawa 《哲学杂志》2020,100(15):2018-2039
ABSTRACT

The temperature dependence of the reduced activation energy w?=?ε/kBT of the conductivity σ has been utilised for determining the impurity conduction mechanism in doped semiconductors in many studies. Herein, the formula for deconvoluting w when plural conduction mechanisms appear is used to confirm the analysis of the data of the Hall-effect measurements on Al-doped n-ZnSe samples. The analysis is performed on the basis of an impurity-Hubbard-band model which includes ε 2 conduction in the top Hubbard band as well as ε 3 and Efros-Shklovskii (ES) variable-range hopping (VRH) conduction processes in the bottom Hubbard band. As the result of the analysis, transitions among the three hopping conduction mechanisms of ε 2, ε 3, and ES VRH are clearly shown in the temperature dependence of w as well as in that of the Hall mobility, which are hardly noticed in the temperature dependence of σ. In addition, the power-law exponent of the prefactor of ES VRH conductivity is determined through the fit to the temperature dependence of w to show that it decreases from ~ 1.5 to ~ 0 with increasing net donor concentration.  相似文献   

19.
We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. The result is obtained that the best-fit values of the GCG model parameters with their confidence level are A s=0.73−0.06+0.06 (1σ) −0.09+0.09 (2σ), α=−0.09−0.12+0.15 (1σ) −0.19+0.26 (2σ). Furthermore, in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is w 0de=−0.96 with the 1σ confidence level −0.91≥w 0de≥−1.00.  相似文献   

20.
The decaying vacuum model (DV), treating dark energy as a varying vacuum, has been studied well recently. The vacuum energy decays linearly with the Hubble parameter in the late-times, ρ Λ (t)∝H(t), and produces the additional matter component. We constrain the parameters of the DV model using the recent data-sets from supernovae, gamma-ray bursts, baryon acoustic oscillations, CMB, the Hubble rate and X-rays in galaxy clusters. It is found that the best fit of the matter density contrast Ω m in the DV model is much lager than that in ΛCDM model. We give the confidence contours in the Ω m h plane up to 3σ confidence level. Besides, the normalized likelihoods of Ω m and h are presented, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号