首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The beta-keto phosphorus ylides (n-Bu)3P=CHC(O)Ph 6, (t-Bu)2PhP=CHC(O)Ph 7, (t-Bu)Ph2P=CHC(O)Ph 8, (n-Bu)2PhP=CHC(O)Ph 9, (n-Bu)Ph2P=CHC(O)Ph 10, Me2PhP=CHC(O)Ph 11 and Ph3P=CHC(O)(o-OMe-C6H4) 12 have been synthesized in 80-96% yields. The Ni(II) complexes [NiPh{Ph2PCH...C(...O)(o-OMeC6H4)}(PPh3)] 13, [NiPh{Ph(t-Bu)PCHC(O)Ph}(PPh3)] 15, [NiPh{(n-Bu)2PCH...C(...O)Ph}(PPh3)] 16 and [NiPh{Ph(n-Bu)PCH...C(...O)Ph}(PPh3)] 17 have been prepared by reaction of equimolar amounts of [Ni(COD)2] and PPh3 with the beta-keto phosphorus ylides 12 or 8-10, respectively, and characterized by 1H and 31P{1H} NMR spectroscopy. NMR studies and the crystal structure determination of 13 indicated an interaction between the hydrogen atom of the C-H group alpha to phosphorus and the ether function. The complexes [NiPh{Ph2PCHC(O)Ph}(Py)] 18, [NiPh{Ph(t-Bu)PCHC(O)Ph}(Py)] 19, [NiPh{(n-Bu)2PCH...C(...O)Ph}(Py)] 20, [NiPh{Ph(n-Bu)PCH...C(...O)Ph}(Py)] 21 and [NiPh{Me2PCH...C(...O)Ph}(Py)] 22 have been isolated from the reactions of [Ni(COD)2] and an excess of pyridine with the -keto phosphorus ylides Ph3PCH=C(O)Ph 3 or 8-11, respectively, and characterized by 1H and 31P{1H} NMR spectroscopy. Ligands 3, 8, 10 and 12 have been used to prepare in situ oligomerization catalysts by reaction with one equiv. of [Ni(COD)2] and PPh3 under an ethylene pressure of 30 or 60 bar. The catalyst prepared in situ from 12, [Ni(COD)2] and PPh3 was the most active of the series with a TON of 12700 mol C2H4 (mol Ni)-1 under 30 bar ethylene. When the beta-keto phosphorus ylide 8 was reacted in situ with three equiv. of [Ni(COD)2] and one equiv. of PPh3 under 30 bar of ethylene, ethylene polymerization was observed with a TON of 5500 mol C2H4 (mol Ni)-1.  相似文献   

2.
N-Trimethylsilyl o-methylphenyldiphenylphosphinimine, (o-MeC6H4)PPh2=NSiMe3 (1), was prepared by reaction of Ph2P(Br)=NSiMe3 with o-methylphenyllithium. Treatment of 1 with LiBun and then Me3SiCl afforded (o-Me3SiCH2C6H4)PPh2=NSiMe3 (2). Lithiations of both 1 and 2 with LiBu(n) in the presence of tmen gave crystalline lithium complexes [Li{CH(R)C6H4(PPh(2=NSiMe3)-.tmen](3, R = H; 4, R = SiMe3). From the mother liquor of 4, traces of the tmen-bridged complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}]2(mu-tmen) (5) were obtained. Reaction of 2 with LiBun in Et2O yielded complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}.OEt2] (6). Reaction of lithiated with Me2SiCl2 in a 2:1 molar ratio afforded dimethylsilyl-bridged compound Me2Si[CH2C6H4(PPh2=NSiMe3)-2]2 (7). Lithiation of 7 with two equivalents of LiBun in Et2O yielded [Li2{(CHC6H4(PPh2=NSiMe3)-2)2SiMe2}.0.5OEt2](8.0.5OEt2). Treatment of 4 with PhCN formed a lithium enamide complex [Li{N(SiMe3)C(Ph)CHC6H4(PPh2=NSiMe3)-2}.tmen] (9). Reaction of two equivalents of 5 with 1,4-dicyanobenzene gave a dilithium complex [{Li(OEt2)2}2(1,4-{C(N(SiMe3)CHC6H4(PPh2=NSiMe3)-2}2C6H4)] (10). All compounds were characterised by NMR spectroscopy and elemental analyses. The structures of compounds 2, 3, 5, 6 and 9 have been determined by single crystal X-ray diffraction techniques.  相似文献   

3.
Hayton TW  Wu G 《Inorganic chemistry》2008,47(16):7415-7423
The reaction of [UO 2(Ar 2nacnac)Cl] 2 [Ar 2nacnac = (2,6- (i)Pr 2C 6H 3)NC(Me)CHC(Me)N(2,6- (i)Pr 2C 6H 3)] with Na(RC(O)CHC(O)R) (R = Me, Ph, CF 3) in tetrahydrofuran results in the formation of UO 2(Ar 2nacnac)(RC(O)CHC(O)R) (R = Me, 1; Ph, 2; CF 3, 3), which can be isolated in moderate yields. The structures of 1 and 2 have been confirmed by X-ray crystallography, while the solution redox properties of 1- 3 have been measured by cyclic voltammetry. Complexes 1- 3 exhibit reduction features at -1.82, -1.59, and -1.39 V (vs Fc/Fc (+)), respectively, at a scan rate of 100 mV.s (-1). The decrease in the reduction potential follows the electron-withdrawing ability of each beta-diketonate ligand. Chemical reduction of 1 and 2 with Cp* 2Co in toluene yields [Cp* 2Co][UO 2(Ar 2nacnac)(RC(O)CHC(O)R)] (R = Me, 4; Ph, 5), while reduction of 3 with Cp 2Co provides [Cp 2Co][UO 2(Ar 2nacnac)(CF 3C(O)CHC(O)CF 3)] ( 6). Complexes 4- 6 have been fully characterized, while the solid-state molecular structure of 5 has also been determined. In contrast to the clean reduction that occurs with Cp* 2Co, reduction of 1 with sodium ribbon, followed by cation exchange with [NEt 4]Cl, produces [NEt 4][UO 2(Ar 2nacnac)(H 2CC(O)CH(O)CMe)] ( 7) in modest yield. This product results from the formal loss of H (*) from a methyl group of the acetylacetonate ligand. Alternately, complex 7 can be synthesized by deprotonation of 1 with NaNTMS 2 in good yield.  相似文献   

4.
New modes of 1,3-dipolar cycloaddition are uncovered by the isolation of [CH2(6-t-Bu-4-Me-C6H2O)2]P(C(CO2Me)C(CO2Me)N[NP(N3)(OC6H2-6-t-Bu-4-Me)2CH2]N) (3) and [CH2(6-t-Bu-4-Me-C6H2O)2]P(C(CO2Me)C(CO2Me)C(O)N) (4) on treating [CH2(6-t-Bu-4-Me-C6H2O)2]P-X [X = N3 (1) and NCO (2)] with the dipolarophile MeO2CC identical to CCO2Me; compound 4 undergoes an unprecedented ring expansion upon addition of 2-(methylamino)ethanol to afford the spirocycle [CH2(6-t-Bu-4-Me-C6H2O)2]P(OCH2CH2N(Me)CH(CO2Me)CH(CO2Me)C(O)N) (5).  相似文献   

5.
The ligated benzonitriles in the platinum(II) complex [PtCl2(PhCN)2] undergo metal-mediated [2 + 3] cycloaddition with nitrones -ON+(R3)=C(R1)(R2) [R1/R2/R3 = H/Ph/Me, H/p-MeC6H4/Me, H/Ph/CH2Ph] to give delta 4-1,2,4-oxadiazoline complexes, [PtCl2(N=C(Ph)O-N(R3)-C(R1)(R2))2] (2a, 4a, 6a), as a 1:1 mixture of two diastereoisomers, in 60-75% yields, while [PtCl2(MeCN)2] is inactive toward the addition. However, a strong activation of acetonitrile was reached by application of the platinum(IV) complex [PtCl4(MeCN)2] and both [PtCl4(RCN)2] (R = Me, Ph) react smoothly with various nitrones to give [PtCl4(N=C(R)O-N(R3)-C(R1)(R2))2] (1b-6b). The latter were reduced to the corresponding platinum(II) complexes [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) by treatment with PhCH2NHOH, while the reverse reaction, i.e. conversion of 1a-6a to 1b-6b, was achieved by chlorination with Cl2. The diastereoisomers of [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) exhibit different kinetic labilities, and liberation of the delta 4-1,2,4-oxadiazolines by substitution with 1,2-bis(diphenylphosphino)ethane (dppe) in CDCl3 proceeds at different reaction rates to give free N=C(R)O-N(R3)-C(R1)(R2) and [PtCl2(dppe)] in almost quantitative NMR yield. All prepared compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and 1H, 13C(1H), and 195Pt (metal complexes) NMR spectroscopies; X-ray structure determination of the first (delta 4-1,2,4-oxadiazoline)Pt(II) complexes was performed for (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)Ph)2] (1a) (a = 9.3562(4), b = 9.8046(3), c = 13.1146(5) A; alpha = 76.155(2), beta = 83.421(2), gamma = 73.285(2) degrees; V = 1117.39(7) A3; triclinic, P1, Z = 2), (R,S)-meso-[PtCl2(N=C(Ph)O-N(Me)-C(H)Ph)2] (2a) (a = 8.9689(9), b = 9.1365(5), c = 10.1846(10) A; alpha = 64.328(6), beta = 72.532(4), gamma = 67.744(6) degrees; V = 686.82(11) A3; triclinic, P1, Z = 1), (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)(p-C6H4Me))2] (3a) (a = 11.6378(2), b = 19.0767(7), c = 11.5782(4) A; beta = 111.062(2) degrees; V = 2398.76(13) A3; monoclinic, P2(1)/c, Z = 4), and (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(CH2Ph)-C(H)Ph2] (5a) (a = 10.664(2), b = 10.879(2), c = 14.388(3) A; alpha = 73.11(3), beta = 78.30(3), gamma = 88.88(3) degrees; V = 1562.6(6) A3; triclinic, P1, Z = 2).  相似文献   

6.
The sequential reaction of ZnMe2 with a 2-pyridylamine (HN(2-C5H4N)R, R = Ph: 1; 3,5-Xy (=3,5-xylyl): 2; 2,6-Xy: 3; Bz (=benzyl): 4; Me: 5), tBuLi and thereafter with oxygen affords various lithium zincate species, the solid-state structures of which reveal a diversity of oxo-capture modes. Amine 1 reacts to give both dimeric THF [Li(Me)OZn[N(2-C5H4N)Ph]2] (6), wherein oxygen has inserted into the Zn-C bond of a [MeZn[N(2-C5H4N)-Ph]2] ion, and the trigonal Li2Zn complex, bis(OtBu)-capped (THF x Li)2-[[(mu3-O)tBu]2Zn[N(2-C5H4N)Ph]2] (7). The structural analogue of 6 (8) results from the employment of 2, while the use of more sterically congested 3 yields a pseudo-cubane dimer [(THF x [Li(tBu)OZn(OtBu)Me]]2] (9) notable for the retention of labile Zn-C(Me). Amines 4 and 5 afford the oxo-encapsulation products [mu4-O)Zn4[(2-C5H4N)-NBz]6] (10b), and [tBu(mu3-O)-Li3(mu6-O)Zn3[(2-C5H4N)NMe]6] (11), respectively, with concomitant oxo-insertion into a Li-C interaction resulting in capping of the fac-isomeric (mu6-O)M3M'3 distorted octahedral core of the latter complex by a tert-butoxide group.  相似文献   

7.
The synthesis and catalysis in the ring-opening polymerisation (ROP) of ε-caprolactone (ε-CL) of aluminium(iii) and tin(ii) complexes supported by quinoline-based N,N,O-tridentate ligands are reported. Reaction of 8-{RC(O)CH(2)P(Ph(2)) = N}C(9)H(6)N (R = Bu(t), 2; R = Ph, 3) with AlMe(3) gave [Al(Me(2)){OCR = CHP(Ph(2)) = N(8-C(9)H(6)N)}] (R = Bu(t), 4; R = Ph, 5). Treatment of 2 and 3 with Sn[N(SiMe(3))(2)](2) generated tin(ii) complexes [Sn{OC(R) = CHP(Ph(2)) = N(8-C(9)H(6)N)}{N(SiMe(3))(2)}] (R = Bu(t), 6; R = Ph, 7). A similar reaction of AlMe(3) with 8-{MeC(O)CH(2)C(Me) = N}C(9)H(6)N gave [Al(Me(2)){OC(Me) = CHC(Me) = NC(9)H(6)N}] (9). Compounds 2-9 were characterised by NMR spectroscopy and elemental analysis. The molecular structures of complexes 4, 6 and 9 were determined by single crystal X-ray diffraction techniques. Investigation of catalysis of complexes 4-7 and 9 in the ROP of ε-CL revealed that the aluminium complexes, 4, 5 and 9, are much more active than the tin(ii) complexes. The kinetic studies for the polymerisation of ε-CL catalysed by complexes 4, 5 and 9 in the presence of benzyl alcohol (BnOH) indicated that the polymerisations proceed with the first-order dependence on monomer concentration. The polymerisation was well controlled and gave a polymer with narrow molecular weight distribution.  相似文献   

8.
Complexes [Pd{C,N-Ar{C(Me)=NOH}-2}(μ-Cl)](2) (1) with Ar = C(6)H(4), C(6)H(3)NO(2)-5 or C(6)H(OMe)(3)-4,5,6, were obtained from the appropriate oxime, Li(2)[PdCl(4)] and NaOAc. They reacted with neutral monodentate C-, P- or N-donor ligands (L), with [PPN]Cl ([PPN] = Ph(3)P=N=PPh(3)), with Tl(acac) (acacH = acetylacetone), or with neutral bidentate ligands N^N (tetramethylethylenediamine (tmeda), 4,4'-di-tert-butyl-2,2'-bipyridine ((t)Bubpy)) in the presence of AgOTf or AgClO(4) to afford complexes of the types [Pd{C,N-Ar{C(Me)=NOH}-2}Cl(L)] (2), [PPN][Pd{C,N-Ar{C(Me)=NOH}-2}Cl(2)] (3), [Pd{C,N-Ar{C(Me)=NOH}-2}(acac)] (4) or [Pd{C,N-Ar{C(Me)=NOH}-2}(N^N)]X (X = OTf, ClO(4)) (5), respectively. Complexes 1 reacted with bidentate N^N ligands in the presence of a base to afford mononuclear zwitterionic oximato complexes [Pd{C,N-Ar{C(Me)=NO}-2}(N^N)] (6). Dehydrochlorination of complexes 2 by a base yielded dimeric oximato complexes of the type [Pd{μ-C,N,O-Ar{C(Me)[double bond, length as m-dash]NO}-2}L](2) (7). The insertion of XyNC into the Pd-C(aryl) bond of complex 2 produced the mononuclear iminoaryloxime derivative [Pd{C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl(CNXy)] (8) which, in turn, reacted with [AuCl(SMe(2))] to give [Pd{μ-N,C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl](2) (9) with loss of XyNC. Some of these complexes are, for any metal, the first containing cyclometalated aryloximato (6, 7) or iminoaryloxime (8, 9) ligands. Various crystal structures of complexes of the types 2, 3, 6, 7, 8 and 9 have been determined.  相似文献   

9.
四羰基双[2,5-二(三甲硅基)-1-甲基环戊二烯基]   总被引:2,自引:0,他引:2  
由甲基环戊二烯经两步类似反应向其环上引入两个Me3Si取代基, 生成(Me3Si)2-MeC5H3, 后者与Fe(CO)5反应除生成预期的双核Fe-Fe键产物[η^5-{Me3Si)2MeC5H2}Fe(CO)]2-(μ-CO)2(2)外, 还分离到小量单核化合物η^5-[(Me2Si)2MeC5H2]Fe(CO)2Cl(3), 2与碘反应生成Fe-Fe键断裂的单核铁碘化物(4)。2经Na/Hg还原生成Fe-Fe键断裂的铁负离子, 后者随即分别与数种氯化物反应, 生成在铁原子上引入相应取代基的铁衍生物η^5-[(Me3Si)2MeC5H2]Fe(CO)2R(R=PhCH2, 5; CH2COOC2H5, 6; Ph3Sn, 7; Ph2SnCl, 8)。测定了4的晶体结构, 晶体属单斜晶系, P21/c空间群, 晶胞参数a=0.7333(1), b=2.0089(3),c=1.3323(4)nm; β=92.02(2)°, V=1.962(1)nm^3, Z=4。  相似文献   

10.
Bok T  Yun H  Lee BY 《Inorganic chemistry》2006,45(10):4228-4237
Regioselective nucleophilic aromatic substitution of an o-fluorine occurs to afford fluorine-substituted o-phenylene-bridged bis(anilido-aldimine) compounds o-C6H4[(C6H2R2)N=CH-C6F4-(H)N(C6H3R'2)]2 when Li(H)N-C6H3R'2 (R' = iPr, Et, Me) is reacted with o-C6H4[(C6H2R2)N=CH-C6F5]2 (R = iPr, Et, Me) in a nonpolar solvent such as diethyl ether or toluene. Successive additions of Me2Zn and SO2 gas to the bis(anilido-aldimine) compounds afford quantitatively dinuclear mu-methylsulfinato zinc complexes o-C6H4[[(C6H2R2)N=CH-C6F4-N(C6H3R'2)-kappa2N,N]Zn(mu-OS(O)Me)]2 (R = iPr, R' = iPr, 3a; R = iPr, R' = Me, 3c; R = Et, R' = (i)Pr, 3d; R = Et, R' = Et, 3e; R = Et, R' = Me, 3f; R = Me, R' = iPr, 3g; R = Me, R' = Et, 3h; R = Me, R' = Me, 3i). The molecular structure of 3c was confirmed by X-ray crystallography. Fluorine-substituted complexes 3a-i show significantly higher TOF (turnover frequencies) than the unfluorinated analogues for CO2/(cyclohexene oxide) copolymerization. The TOF is highly sensitive to the substituents R and R', and the highest TOF (2480 h(-1)) is obtained with 3g (R = Me, R' = iPr). Complex 3g is less sensitive to the residual protic impurities present in the monomers and shows activity at such a low catalyst concentration as [Zn]:[cyclohexene oxide] = 1:50,000, at which the unfluorinated analogue is completely inactive. By realizing the activity at such an extremely low [Zn]:[cyclohexene oxide] ratio, we achieve a high TON (turnover number) up to 10,100. High-molecular-weight polymers (M(n), 100,000-200,000) are obtained with a rather broad molecular-weight distribution (M(w)/M(n), 1.3-2.5). The obtained polymers are not perfectly alternating, and variable carbonate linkages (65-85%) are observed depending on the N-aryl ortho substituents R and R' and the polymerization conditions.  相似文献   

11.
One-electron oxidation of the beta-diketiminate titanium(III) bis-neopentyl complex (Nacnac)Ti(CH2tBu)2 (Nacnac = [Ar]NC(Me)CHC(Me)N[Ar], Ar = 2,6-(CHMe2)2C6H3) promotes alpha-abstraction to afford the rare and terminal four-coordinate neopentylidene (Nacnac)Ti=CHtBu(OTf), which was structurally characterized. Alkylidene (Nacnac)Ti=CHtBu(OTf) reacts cleanly with benzophenone and the imine functionality of the Nacnac ligand to afford the corresponding Wittig-type products.  相似文献   

12.
Reactions of [PdCl2(COD)] with 1 equiv. of the iminophosphorane-phosphine ligands Ph2PCH2P{=NP(=O)(OR)2}Ph2 (R=Et, Ph) lead to the novel Pd(II) derivatives cis-[PdCl2(kappa2-(P,N)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)] (R=Et, Ph). Pd-N bond cleavage readily takes place upon treatment of these species with a variety of two-electron donor ligands. By this way, complexes cis-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)(L)] (R=Et, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3; R=Ph, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3) have been synthesized in high yields. The addition of two equivalents of ligands to dichloromethane solutions of [PdCl2(COD)] results in the formation of complexes trans-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)2] (R=Et, Ph), which can be converted into the dicationic species [Pd(Ph2PCH2P{=NP(=O)(OR)2}Ph2)2][SbF6]2 (R=Et, Ph) by treatment with AgSbF6. Complex also reacts with CNtBu to afford trans-[Pd(kappa1(P)-Ph2PCH2P{=NP(=O)(OPh)2}Ph2)2(CNtBu)2][SbF6]2. The structures of and have been determined by single-crystal X-ray diffraction methods. In addition, the ability of these Pd(II) complexes to promote the catalytic cycloisomerization of (Z)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran has also been studied.  相似文献   

13.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

14.
To learn more about the bleaching action of pulps by (hydroxymethyl)phosphines, lignin chromophores, such as the alpha,beta-unsaturated aromatic aldehydes, sinapaldehyde, coniferylaldehyde, and coumaraldehyde, were reacted with the tertiary phosphines R2R'P [R = R' = Me, Et, (CH2)3OH, iPr, cyclo-C6H11, (CH2)2CN; R = Me or Et, R' = Ph; R = Ph, R' = Me, m-NaSO3-C6H4] in water at room temperature under argon. In all cases, initial nucleophilic attack of the phosphine occurs at the activated C=C bond to form a zwitterionic monophosphonium species. With the phosphines PR3 [R = Me, Et, (CH2)3OH] and with R2R'P (R = Me or Et, R' = Ph), the zwitterion undergoes self-condensation to give a bisphosphonium zwitterion that can react with aqueous HCl to form the corresponding dichloride salts (as a mixture of R,R- and S,S-enantiomers); X-ray structures are presented for the bisphosphonium chlorides synthesized from the Et3P and Me3P reactions with sinapaldehyde. With the more bulky phosphines, iPr3P, MePPh2, (cyclo-C6H11)3P, and Na[Ph2P(m-SO3-C6H4)], only an equilibrium of the monophosphonium zwitterion with the reactant aldehyde is observed. The weakly nucleophilic [NC(CH2)2]3P does not react with sinapaldehyde. An analysis of some exceptional 1H NMR data within the prochiral phosphorus centers of the bisphosphonium chlorides is also presented.  相似文献   

15.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

16.
The orientation of the orthopalladation of iminophosphoranes R3P=NCH2Aryl (R=Ph, Aryl=Ph (1a), C6H(4)-2-Br (1b), C6H4-Me-2 (1e), C6H3-(Me)(2)-2,5 (1f); R=p-tolyl, Aryl=Ph (1c); R=m-tolyl, Aryl=Ph (1d); R3P=MePh2P, and Aryl=Ph (1g)) has been studied. 1a reacts with Pd(OAc)2 (OAc=acetate) giving endo-[Pd(micro-Cl){C,N-C6H4(PPh2=NCH2Ph)-2}]2 (3a), while exo-[Pd(micro-Br){C,N-C6H4(CH2N=PPh3)-2}]2 (3b) could only be obtained by the oxidative addition of 1b to Pd2(dba)3. The endo form of the metalated ligand is favored kinetically and thermodynamically, as shown by the conversion of exo-[Pd(micro-OAc){C,N-C6H4(CH2N=PPh3)-2}]2 (2b) into endo-[Pd(micro-OAc){C,N-C6H4(PPh2=NCH2Ph)-2}]2 (2a) in refluxing toluene. The orientation of the reaction is not affected by the introduction of electron-releasing substituents at the Ph rings of the PR3 (1c and 1d) or the benzyl units (1e and 1f), and endo complexes (3c-3f) were obtained in all cases. The palladation of MePh2P=NCH2Ph (1g) can be regioselectively oriented as a function of the solvent. The exo isomer [Pd(micro-Cl){C6H4(CH2N=PPh2Me)-2}]2 (exo-3g) is obtained in refluxing CH2Cl2, while endo-[Pd(micro-Cl){C,N-C6H4(PPh(Me)=NCH2Ph)-2}]2 (endo-3g) can be isolated as a single isomer in refluxing toluene. In this case, the exo metalation is kinetically favored while an endo process occurs under thermodynamic control, as shown through the rearrangement of [Pd(micro-OAc){C6H4(CH2N=PPh2Me)-2}]2 (exo-2g) into [Pd(micro-OAc){C,N-C6H4(P(Ph)Me=NCH2Ph)-2}]2 (endo-2g) in refluxing toluene. The preference for the endo palladation of 1a and the kinetic versus thermodynamic control in 1g has been explained through DFT studies of the reaction mechanism.  相似文献   

17.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

18.
Rhodium and iridium complexes bearing a tridentate [PEP] type ligand ([PEP] = {o-(Ph(2)P)C(6)H(4)}(2)E(Me); E = Ge or Sn) were synthesized through the phosphine exchange reaction accompanied by selective E-C bond cleavage. The ligand precursors {o-(Ph(2)P)C(6)H(4)}(2)EMe(2) (E = Ge or Sn) were readily obtained in excellent yields by treating {o-(Ph(2)P)C(6)H(4)}(2)Li with 0.5 equivalents of Me(2)ECl(2). Tris(triphenylphosphine)rhodium(i) carbonyl hydride M(H)(CO)(PPh(3))(3) (M = Rh, Ir) cleaved one of the E-Me bonds of {o-(Ph(2)P)C(6)H(4)}(2)EMe(2) exclusively to afford the trigonal bipyramidal (TBP) complexes, [PEP]M(CO)(PPh(3)). Square-planar rhodium complexes [PEP]Rh(PPh(3)) were also prepared from the reactions of tetrakis(triphenylphosphine)rhodium(i) hydride Rh(H)(PPh(3))(4) with {o-(Ph(2)P)C(6)H(4)}(2)EMe(2). Further, the trans influence of group 14 elements E (E = Si, Ge, Sn) in [PEP]Rh(PPh(3)) is discussed in terms of the (1)J(Rh-P) coupling constants, indicating that E exhibited a stronger trans labilizing effect in the order Sn < Ge < Si.  相似文献   

19.
In the presence of NaH, the reaction between N2 and Mo(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2) proceeds at room temperature to afford NMo(N[t-Bu]Ar)3 (95%). Lewis acidic silyl triflates (Me3SiOTf + pyridine or (i-Pr)3SiOTf) mediate a reaction between acid chlorides and NMo(N[t-Bu]Ar)3 to yield acyl imidos [RC(O)NMo(N[t-Bu]Ar)3][OTf] (R = Me, 92%; Ph, 75%; t-Bu, 64%). The reduction of [RC(O)NMo(N[t-Bu]Ar)3][OTf] by magnesium anthracene followed by treatment with Me3SiOTf affords molybdenum ketimides, R(Me3SiO)CNMo(N[t-Bu]Ar)3 (R = Me, 82%; Ph, 77%; t-Bu, 46%). Exposing R(Me3SiO)CNMo(N[t-Bu]Ar)3 to SnCl2 or ZnCl2 produces ClMo(N[t-Bu]Ar)3 (71-93% for SnCl2) and RCN (97-99%). Magnesium metal reduces ClMo(N[t-Bu]Ar)3 to Mo(N[t-Bu]Ar)3 (74%), completing a synthetic cycle. New strategies for the functionalization of sterically hindered nitrides and nitrile extrusion from d2 ketimides are presented in the context of a new route for derivatizing N2.  相似文献   

20.
alpha-Hydrogen migration in the phosphide (Nacnac)Ti=CHtBu(PHR) (Nacnac- = [Ar]NC(Me)CHC(Me)N[Ar], Ar = 2,6-iPr2C6H3, R = C6H11, 2,4,6-iPr3C6H2, 2,4,6-tBuC6H2), prepared from salt metathesis of (Nacnac)Ti=CHtBu(PHR) with LiPHR, generates terminal and four-coordinate phosphinidene complexes (Nacnac)Ti=PR(CH2tBu), one of which was structurally characterized (R = 2,4,6-tBu3C6H2). Phosphinidene intermediate (Nacnac)Ti=PR(CH2tBu) (R = C6H11, 2,4,6-iPr3C6H2) transform to ([Ar]NC(Me)CHC(Me)P[R][CH2tBu])Ti=NAr(OEt2) through "phospha-Staudinger" and subsequent phosphaalkene-insertion reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号