首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The two-dimensional unsteady flow of a conducting viscous incompressible fluid past, an infinite flat plate with uniform suction, is considered in the presence of a uniform magnetic field. For a constant time, it is shown that for a given Hartmann numbera, as the cross Reynolds number β (corresponding to the suction velocity of the plate) increases, the velocity at any point of the fluid decreases and the skin friction at the plate increases. The results also hold good for a given β, asa increases if the magnetic lines of force are fixed relative to the fluid and are just opposite for the magnetic lines of force fixed relative to the plate.  相似文献   

2.
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical slender cylinder is studied numerically. A uniform magnetic field is applied perpendicular to the cylinder. The resulting governing equations are transformed into the non-similar boundary layer equations and solved using the Keller box method. The velocity and temperature profiles as well as the local skin friction and the local heat transfer parameters are determined for different values of the governing parameters, mainly the transverse curvature parameter, the magnetic parameter, the electric field parameter and the Richardson number. For some specific values of the governing parameters, the results agree very well with those available in the literature. Generally, it is determined that the local skin friction coefficient and the local heat transfer coefficient increase, increasing the Richardson number, Ri (i.e. the mixed convection parameter), electric field parameter E1 and magnetic parameter Mn.  相似文献   

3.
In this study, the effect of the viscous dissipation in steady, laminar mixed convection heat transfer from a heated/cooled vertical flat plate is investigated in both aiding and opposing buoyancy situations. The external flow field is assumed to be uniform. The governing systems of partial differential equations are solved numerically using the finite difference method. A parametric study is performed in order to illustrate the interactive influences of the governing parameters, mainly, the Richardson number, Ri (also known as the mixed convection parameter) and the Eckert number, Ec on the velocity and temperature profiles as well as the friction and heat transfer coefficients. Based on the facts the free stream is either in parallel or reverse to the gravity direction and the plate is heated or cooled, different flow situations are identified. The influence of the viscous dissipation on the heat transfer varied according to the situation. For some limiting cases, the obtained results are validated by comparing with those available from the existing literature. An expression correlating Nu in terms of Pr, Ri and Ec is developed.  相似文献   

4.
The group theoretic method is applied for solving problem of a unsteady free-convective laminar boundary-layer flow on a non-isothermal vertical plate under the effect of an external velocity and a magnetic field normal to the plate. The application of two-parameter transformation group reduces the number of independent variables, by two, and consequently the system of governing partial differential equations with the boundary and initial conditions reduces to a system of ordinary differential equations with appropriate corresponding conditions. The Runge–Kutta shooting method used to find the numerical solution of the velocity field, shear stress, heat transfer and heat flux has been obtained. The effect of the magnetic field on the velocity field and the Prandtl number on the heat transfer and heat flux has been discussed.  相似文献   

5.
This paper deals with hydromagnetic flow of an electrically conducting, incompressible viscous fluid near an accelerated flat, non-conducting plate, in the presence of another parallel plate, when there is a transversely applied magnetic field. Induced magnetic field is neglected in comparison with the applied magnetic field. Laplace transform techniques are used. The equations are integrated by applying residue principle, and expressions for velocity profiles and skin-friction at both plates are derived for different values of Hartmann number M. It is observed that, with the increase of the value of the Hartmann number M, the velocity profiles are flattened, the shear stress at the stationary plate decreases, as the value of the time T and Hartmann number M increases, but the shear stress at the accelerated plate increases directly in proportion with the increase in time and Hartmann number.  相似文献   

6.
This work considers an electrically conducting fluid filled between two concentric cylindrical walls relatively close to each other. A theoretical solution for the steady Taylor–Couette flow between these two electrically insulated rotating cylinders under the influence of a radial magnetic field is provided in this work. By solving the appropriate set of governing equations simultaneously, the profiles of fluid tangential velocity component and induced magnetic field were obtained as complicated functions involving the modified Bessel functions of the first and second kinds of the first-order in terms of radial coordinates and Hartmann number. A computational study was also performed to validate the present theoretical solution. The analytical and computational results are identical when Ha = 1 while these results only slightly deviate from each other as Ha increases. Current results show that, the presence of the external magnetic field causes the flow close to the slower cylinder to accelerate while that close to the faster cylinder to decelerate. This has clearly implied the fact that an external magnetic field tends to make the velocity distribution across the inner and outer cylinders more uniform.  相似文献   

7.
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical plate is studied numerically, taking into account the effects of Ohmic heating and viscous dissipation. A uniform magnetic field is applied perpendicular to the plate. The resulting governing equations are transformed into the non-similar boundary layer equations and solved using the Keller box method. Both the aiding-buoyancy mode and the opposing-buoyancy mode of the mixed convection are examined. The velocity and temperature profiles as well as the local skin friction and local heat transfer parameters are determined for different values of the governing parameters, mainly the magnetic parameter, the Richardson number, the Eckert number and the suction/injection parameter, fw. For some specific values of the governing parameters, the results agree very well with those available in the literature. Generally, it is determined that the local skin friction coefficient and the local heat transfer coefficient increase owing to suction of fluid, increasing the Richardson number, Ri (i.e. the mixed convection parameter) or decreasing the Eckert number. This trend reverses for blowing of fluid and decreasing the Richardson number or decreasing the Eckert number. It is disclosed that the value of Ri determines the effect of the magnetic parameter on the momentum and heat transfer.  相似文献   

8.
The group theoretic method is applied for solving problem of the flow of an elastico-viscous liquid past an infinite flat plate in the presence of a magnetic field normal to the plate. The application of one-parameter transformation group reduces the number of independent variables, by one, and consequently the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate corresponding conditions. Numerical solution of the velocity field and heat transfer have been obtained. The effect of the magnetic parameter M on velocity field, shear stress, temperature fields and heat transfer has been discussed.  相似文献   

9.
An exact solution is derived by Laplace-transform technique for the problem of the flow of a conducting dusty gas occupying a semi-infinite space in the presence of a transverse magnet field. It is assumed that the flow is independent of the distance parallel to the plate and that the mass concentration of dust is small. Formulas are derived in terms of a constant external impulsive velocity field for the velocity profiles of both the dust and the conducting gas only for values of Hartmann number greater than or equal to unity. For these values of the Hartmann number the skin friction is also obtained.  相似文献   

10.
This paper deals with the two-dimensional unsteady flow of a conducting viscous incompressible fluid between two parallel, porous plates, one of which is fixed, while the other is uniformly accelerated, when there is a transverse magnetic field. It is shown that, for a given Hartmann number M, as suction parameter β increases, the velocity at any point of the fluid increases, the Skin friction at the stationary plate increases, while that at the accelerated plate decreases. The results are true, as time T increases, for given Hartmann number M and the suction parameter β. The results also hold good for a given β, as M increases when the magnetic lines of force are fixed relative to the plate, while they are just opposite for the magnetic lines of force fixed relative to the fluid.  相似文献   

11.
In this paper, a fundamental solution for the coupled convection–diffusion type equations is derived. The boundary element method (BEM) application then, is established with this fundamental solution, for solving the coupled equations of steady magnetohydrodynamic (MHD) duct flow in the presence of an external oblique magnetic field. Thus, it is possible to solve MHD duct flow problems with the most general form of wall conductivities and for large values of Hartmann number. The results for velocity and induced magnetic field is visualized in terms of graphics for values of Hartmann number M?300M?300.  相似文献   

12.
In this paper a study is carried out to understand the transition effect of boundary layer flow: (1) due to a suddenly imposed magnetic field over a viscous flow past a stretching sheet and (2) due to sudden withdrawal of magnetic field over a viscous flow past a stretching sheet under a magnetic field. In both the cases the sheet stretches linearly along the direction of the fluid flow. Governing equations have been non-dimensionalised and the non-dimensionalised equations have been solved using the implicit finite difference method of Crank–Nicholson type. Comparison between the steady state exact solutions and the steady state computed solutions has been carried out. Graphical representation of the dimensionless horizontal velocity, vertical velocity and local skin friction profiles of the steady state and unsteady state has been presented. Computation has been carried out for various values of the magnetic parameter M. The obtained results has been interpreted and discussed.  相似文献   

13.
A theoretical study of unsteady magnetohydrodynamic viscous Hartmann–Couette laminar flow and heat transfer in a Darcian porous medium intercalated between parallel plates, under a constant pressure gradient is presented. Viscous dissipation, Joule heating, Hall current and ionslip current effects are included as is lateral mass flux at both plates. The dimensionless conservation equations for the primary (x1-direction), secondary (z1-direction) momentum and also energy conservation equation are derived and solved using a computational technique known as Network Simulation Methodology (NSM). Velocity distributions (u1, w1) and temperature distribution (T1) at the channel centre (y1 = 0) over time (t1) are studied graphically for the effects of Darcy number (Da), Hartmann number (Ha), transpiration (Nt), Hall current parameter (Be), ionslip parameter (Bi), pressure gradient parameter (dP/dx1) with Prandtl number prescribed at 7.0 (electrically conducting water), Eckert number held constant at 0.25 (heat convection from the plates to the fluid) and Reynolds number (Re) fixed at 5.0 (for Re < 10, Darcian model is generally valid). Increasing Darcy number causes an increase in temperature, T1; values are however significantly reduced for the higher Hartmann number case (Ha = 10). For the case of low transpiration (i.e. Nt = 1 which corresponds to weak suction at the upper plate and weak injection at the lower plate), both primary velocity (u1) and secondary velocity (w1) are increased with a rise in Darcy number (owing to a simultaneous decrease in Darcian porous drag); temperature T1 is also increased considerably with increasing Da. However, for stronger transpiration (Nt = 10), magnitudes of u1, w1 and T1 are significantly reduced and also significant overshoots are detected prior to the establishment of steady state flow. With increasing Hall current parameter, Be, (for the purely fluid regime i.e. Da  ∞), primary velocity is considerably increased, whereas secondary velocity is reduced; temperatures are decreased in the early stages of flow but effectively increased in the steady state with increasing Be. With strong Darcian drag present (Da = 0.01 i.e. very low permeability), magnitudes of u1, w1 and T1 are considerably reduced and temperatures are found to be reduced for all t1, with increasing Hall current effect (Be). Increasing ionslip current parameter (Bi) increases primary velocity (u1), decreases secondary velocity (w1) and also temperature (T1) for all time (t1), in the infinite permeability case (Da  ∞). For weakly Darcian flow, ionslip parameter (Bi) has a much reduced effect on the velocity distributions. Temperature, T1 is strongly increased with a rise in pressure gradient parameter, dP1/dx1, as is primary velocity (u1); however, secondary velocity (w1) is reduced. The present study has applications in hybrid magnetohydrodynamic (MHD) energy generators, materials processing, geophysical hydromagnetics, etc.  相似文献   

14.
The problem dealing with the steady flow of an Oldroyd 8-constant fluid over a suddenly moved plate is considered. The fluid is electrically conducting and a uniform magnetic field is applied in the transverse direction. An analytical solution of the nonlinear boundary value problem is obtained using homotopy analysis method (HAM). The behavior of the material constants and the magnetic field is seen on the velocity distribution. It is noted that the boundary layer thickness decreases by increasing the magnetic parameter.  相似文献   

15.
Stoke's classic problem involving the impulsive motion of an infinite flat plate in an unbounded viscous incompressible fluid is investigated under the additional specification that the fluid is electrically conducting and the motion is developed in the presence of uniform transverse magnetic field. For the fluids with arbitrary magnetic Prandtl number, the compact expression for the skin friction coefficient at the plate is given in terms of exponential and error functions of complex arguments. For the fluids with unit magnetic Prandtl number, expressions for the induced magnetic field, velocity, current density and induced electric field in the viscous boundary layer region set up near the plate are obtained. The effect of the magnetic field on the skin friction is to make it approach the steady state faster than in nonmagnetic case.  相似文献   

16.
An analysis is made of the steady shear flow of an incompressible viscous electrically conducting fluid past an electrically insulating porous flat plate in the presence of an applied uniform transverse magnetic field. It is shown that steady shear flow exists for suction at the plate only when the square of the suction parameter S is less than the magnetic parameter Q. In this case the velocity at a given point increases with increase in either the magnetic field or suction velocity. The shear stress at the plate increases with increase in either S or the free-stream shear-rate parameter σ1 or Q. The analysis further reveals that solution exists for steady shear flow past a porous flat plate subject to blowing only when the square of the blowing parameter S1 is less than Q. It is found that the induced magnetic field at a given location decreases with increase in Q. Further the wall shear stress decreases with increase in S1. No steady shear flow is possible for blowing at the plate when S12 > Q. Received: June 16, 2004; revised: October 24, 2004  相似文献   

17.
This paper presents the influence of magnetic field on heat due to viscous and electrical dissipations for an incompressible, viscous, electrically conducting fluid through a circular pipe in the presence of an applied (transverse) uniform magnetic field. The walls of the pipe are assumed to be non-conducting and kept at uniform temperature gradient in one case and at a constant temperature gradient in another case. The heat equation governing the present problem is solved exactly in hypergeometric series. The temperature at the centre of the pipe Te, unweighted mean temperature Tm and weight mean temperature TM are calculated. The temperature profiles are shown graphically for different values of Hartmann number M, Brinkman number Br and a non-dimensional number S. Numerical calculations are made for the Nusselt number and are entered in the table.  相似文献   

18.
Lie group method is investigated for solving the problem of heat transfer in an unsteady, three-dimensional, laminar, boundary-layer flow of a viscous, incompressible and electrically conducting fluid over inclined permeable surface embedded in porous medium in the presence of a uniform magnetic field and heat generation/absorption effects. A uniform magnetic field is applied in the y-direction and a generalized flow model is presented to include the effects of the macroscopic viscous term and the microscopic permeability of porous medium. The infinitesimal generators accepted by the equations are calculated and the extension of the Lie algebra for the problem is also presented. The restrictions imposed by the boundary conditions on the generators are calculated. The investigation of the three-independent-variable partial differential equations is converted into a two-independent-variable system by using one subgroup of the general group. The resulting equations are solved numerically with the perturbation solution for various times. Velocity, temperature and pressure profiles, surface shear stresses, and wall-heat transfer rate are discussed for various values of Prandtl number, Hartmann number, Darcy number, heat generation/absorption coefficient, and surface mass-transfer coefficient.  相似文献   

19.
In this study, the unsteady free convection magnetohydrodynamical flow of a viscous, incompressible, and electrically conducting fluid between two horizontally directed slipping plates is considered. The external magnetic filed is applied uniformly in the y-direction and the fluid is assumed to be of low conductivity so that the induced magnetic field is negligible. So the relevant variables, that is, the velocity and the temperature, depend only on one coordinate, the y-axis. The governing equations of velocity and temperature fields are obtained from the continuity, momentum, and energy equations. The boundary conditions for the velocity are taken in the most general form as Robins type which contain slipping parameter. Moreover, the upper plate is heated exponentially and the lower plate is adiabatic. Finite difference method (FDM) is used to simulate the numerical solutions of the problem in which the explicit forward difference in time variable t and central difference in space variable y is used. Hartmann number, Prandtl number, decay factor, and slipping parameter influences on the flow and temperature are shown graphically. It is seen that as the Hartmann number increases, the velocity magnitude drops, which is the well-known flattening tendency of the MHD flow. Also, the increase in decay factor causes an increase in both the velocity and temperature magnitudes at increasing time levels, but it does not change further close to the steady-state. Furthermore, the convergence and stability conditions of the considered scheme are obtained in terms of Hartmann number, Prandtl number, and the slip length.  相似文献   

20.
Exact solutions of the Navier-Stokes equations are derived by a Laplace-transform technique for two-dimensional, incompressible flow of an electrically conducting fluid past an infinite porous plate under the action of a transverse magnetic field subject to the conditions: (i) the magnetic Prandtl number Pm is unity, and (ii) the Alfven velocity is less than the suction velocity. It is assumed that the flow is independent of the distance parallel to the plate and that the velocity component normal to the plate is constant. General formulae are derived for the velocity distribution and the magnetic field in terms of the given external velocity. The skin-friction is obtained and some special cases are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号