首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the use of a strain-promoted copper-free click reaction in the post-self-assembly functionalization of organoplatinum(II) metallacycles. The coordination-driven self-assembly of a 120° cyclooctyne-tethered dipyridyl donor with 60° and 120° di-Pt(II) acceptors forms molecular rhomboids and hexagons bearing cyclooctynes. These species undergo post-self-assembly [3+2] Huisgen cycloaddition with a variety of azides to give functionalized ensembles under mild conditions.  相似文献   

2.
The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear (31P and 1H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.  相似文献   

3.
The Ru(II) complexes [Ru(bpp)(dcbpy)Cl](+) (1), [Ru(tcbpp)(bpy)Cl](+) (2), and [Ru(tc'bpp)(bpy)Cl](+) (3) (bpp = 2,6-bis(N-pyrazolyl)pyridine, dcbpy = 4,4'-dicarboxyl-bipyridine, bpy = bipyridine, tcbpp = 4-carboxyl-2,6-bis(2-carboxyl-N-pyrazolyl)pyridine, tc'bpp = 4-carboxyl-2,6-bis(4-carboxyl-N-pyrazolyl)pyridine) are studied theoretically using density functional theory (DFT) techniques to explore their properties as dye in a solar cell. The calculated geometry structure and absorption spectrum of 1 are consistent with its experimental results. The calculation results indicate which sites the COOH groups attach to can significantly influence the electronic structure of the complex. By migrating the COOH groups from the bpy ligand in 1 to bpp ligand in 2 and 3, the nature of LUMO changes from bpy-localized to bpp dominated. The calculated low-lying absorptions at λ > 370 nm of the three complexes are categorized as metal-to-ligand charge-transfer (MLCT) transitions and the transition terminates at the orbital populated by the COOH appended ligand. The atomic spin density analysis also indicates that the ligand which is modified by the COOH groups is the ideal spot for the captured electron to situate. It can be predicted that the performance of 2 and 3 in the dye-sensitized solar cell can be enhanced as compared with 1.  相似文献   

4.
A novel coordination polymer containing Co(NCS)2 and a rigid ligand, 2,5-bis(4-pyridylethynyl)-thiophene showing unusual flexibility was synthesized.  相似文献   

5.
Hybrid supramolecular architectures have been fabricated with acceptor 1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBP) and donor 2,6-bis(3,4,5-tris-dodecyloxy-phenyl)dithieno[3,2-b:2',3'-d]thiophene (DTT) compounds on highly oriented pyrolytic graphite (HOPG) surfaces, and their structures and molecular conductance are characterized by scanning tunneling microscopy/spectroscopy (STM/STS). Stable, one-component adlayers of PBP and DTT are also investigated. The coadsorption of two-component mixtures of PBP and DTT results in a variety of hybrid nanopattern architectures that differ from those of their respective one-component surface assemblies. Adjusting the acceptor/donor molar ratio in mixed adlayer assemblies results in dramatic changes in the structure of the hybrid nanopatterns. STS measurements indicate that the HOMO and LUMO energy levels of PBP and DTT on an HOPG surface are relatively insensitive to changes in the hybrid supramolecular architectures. These results provide important insight into the design and fabrication of two-dimensional hybrid supramolecular architectures.  相似文献   

6.
Hydrogen bonds with high selectivity and directionality are significant in harnessing molecules to form 2D supramolecular nanostructures. The competition and reorganization of hydrogen bond partners determine the ultimate molecular assembly and pattern in a 2D supramolecular system. In this study, multicomponent assemblies of a monodendron (5-benzyloxy-isophthalic acid derivative, BIC) and pyridylethynyl derivatives [1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBPC12) and 1,4-bis(4-pyridylethynyl)-2,3-bis-octadecyloxy-benzene (PBPC18)] have been studied by scanning tunneling microscopy (STM) on a graphite surface. BIC molecules are able to associate with PBPC12 and PBPC18 molecules to induce the rearrangement of hydrogen bond partners and form coassembly structures. Interestingly, BIC acts as a template molecule in the coassembly process, and these multicomponent structures exhibit similar structural features to the assembly structures of BIC itself. The structural details of the coassembled structures are revealed by high-resolution STM images, and their relationship with the original BIC assemblies is discussed. These results provide important insights into the design and fabrication of hydrogen-bond-directed multicomponent molecular nanostructures on solid surfaces.  相似文献   

7.
The tridentate ligand 2,6-bis(2-benzimidazolyl)pyridine has the ability to detect toxic benzene metabolites such as phenol, hydroquinone, resorcinol, catechol and p-benzoquinone by simple techniques like UV/vis and fluorescence spectroscopy. The formation of a stable supramolecular complex between 2,6-bis(2-benzimidazolyl)pyridine and hydroquinone was confirmed by X-ray analysis.  相似文献   

8.
A family of hexakis-substituted [60]fullerene adducts endowed with the well-known tridentate 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand for spin-crossover (SCO) systems has been designed and synthesized. It has been experimentally and theoretically demonstrated that these molecular scaffolds are able to form polynuclear SCO complexes in solution. UV-vis and fluorescence spectroscopy studies have allowed monitoring of the formation of up to six Fe(ii)–bpp SCO complexes. In addition, DFT calculations have been performed to model the different complexation environments and simulate their electronic properties. The complexes retain SCO properties in the solid state exhibiting both thermal- and photoinduced spin transitions, as confirmed by temperature-dependent magnetic susceptibility and Raman spectroscopy measurements. The synthesis of these complexes demonstrates that [60]fullerene hexakis-adducts are excellent and versatile platforms to develop polynuclear SCO systems in which a fullerene core is surrounded by a SCO molecular shell.

Polynuclear spin-crossover molecules showing both thermal and photoinduced spin transitions have been prepared using a [60]fullerene hexakis-adduct endowed with Fe(ii) complexes of tridentate 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand.  相似文献   

9.
Monomeric copper(I) alkyl complexes that possess the N-heterocyclic carbene (NHC) ligands IPr, SIPr, and IMes [IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, SIPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] react with amines or alcohols to release alkane and form the corresponding monomeric copper(I) amido, alkoxide, or aryloxide complexes. Thermal decomposition reactions of (NHC)Cu(I) methyl complexes at temperatures between 100 and 130 degrees C produce methane, ethane, and ethylene. The reactions of (NHC)Cu(NHPh) complexes with bromoethane reveal increasing nucleophilic reactivity at the anilido ligand in the order (SIPr)Cu(NHPh) < (IPr)Cu(NHPh) < (IMes)Cu(NHPh) < (dtbpe)Cu(NHPh) [dtbpe = 1,2-bis(di-tert-butylphosphino)ethane]. DFT calculations suggest that the HOMO for the series of Cu anilido complexes is localized primarily on the amido nitrogen with some ppi(anilido)-dpi(Cu) pi-character. [(IPr)Cu(mu-H)]2 and (IPr)Cu(Ph) react with aniline to quantitatively produce (IPr)Cu(NHPh)/dihydrogen and (IPr)Cu(NHPh)/benzene, respectively. Analysis of the DFT calculations reveals that the conversion of [(IPr)Cu(mu-H)]2 and aniline to (IPr)Cu(NHPh) and dihydrogen is favorable with DeltaH approximately -7 kcal/mol and DeltaG approximately -9 kcal/mol.  相似文献   

10.
The synthesis and characterization of mixed ligand 2,2';6',2' '-terpyridine (tpy) ruthenium complexes with 2,6-bis([1,2,4]triazol-3-yl)pyridine, 2,6-bis(5-phenyl-[1,2,4]triazol-3-yl)pyridine, and 2,6-bis([1,2,3,4]tetrazol-5-yl)pyridine are reported. The species are characterized by HPLC, 1H NMR, UV/vis, and emission spectroscopy. The photophysical properties of the complexes are investigated as a function of temperature over the range 80-320 K. The emission lifetime observed for the fully deprotonated compounds at room temperature is about 80 ns. This increase by 2 orders of magnitude with respect to the parent "[Ru(tpy)2](2+)" complex is rationalized by an increase in the energy of the metal based dsigma orbital, rather than by manipulation of the pi* orbitals on the ligands. The acid-base and electrochemical properties of the compounds are reported also.  相似文献   

11.
Multiplet splittings for several excited configurations of [Co(II)W(12)O(40)](6-) were calculated using DFT methods. In agreement with the experimental interpretation of the spectrum the calculations found that the first strong band corresponds to Co d-d transitions, but it is worth noting that superposed to these transitions there are charge transfer transitions from cobalt to tungsten. The calculations also showed the importance of Jahn-Teller distortions in the excited states. With the exception of the consequences derived from a smaller splitting of d cobalt orbitals the d-d spectrum of [CoCl(4)](2-) is similar to that of the more complex Keggin anion. Finally, the energy of the bielectronic transition (4)A(2) --> (4)T(1)(P) was estimated via an approximate procedure based on ligand field theory.  相似文献   

12.
Zhang WH  Song YL  Ren ZG  Li HX  Li LL  Zhang Y  Lang JP 《Inorganic chemistry》2007,46(16):6647-6660
The assembly of a new family of [(eta5-C5Me5)MoS3Cu3]-supported supramolecular compounds from a preformed cluster [PPh4][(eta5-C5Me5)MoS3(CuNCS)3].DMF (1.DMF) with four multitopic ligands with different symmetries is described. Reactions of 1 with 1,2-bis(4-pyridyl)ethane (bpe) (Cs symmetry) or 1,4-pyrazine (1,4-pyz) (D2h symmetry) in aniline gave rise to two polymeric clusters {[{(eta5-C5Me5)MoS3Cu3}2(NCS)3(mu-NCS)(bpe)3].3aniline}n (2) and [(eta5-C5Me5)MoS3Cu3(1,4-pyz)(mu-NCS)2]n (3). On the other hand, solid-state reactions of 1 with 2,4,6-tri(4-pyridyl)-1,3,5-triazine (tpt) (D3h symmetry) or 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (H2tpyp) (D4h symmetry if 21H and 23H of the H2tpyp are omitted) at 100 degrees C for 12 h followed by extraction with aniline yielded another two polymeric clusters {[(eta5-C5Me5)MoS3Cu3(tpt)(aniline)(NCS)2].0.75aniline. 0.5H2O}n (4) and {[(eta5-C5Me5)MoS3Cu3(NCS)(mu-NCS)(H2tpyp)0.4(Cu-tpyp)0.1].2aniline.2.5benzene}n (5). These compounds were characterized by elemental analysis, IR spectra, UV-vis spectra, 1H NMR, and X-ray analysis. Compound 2 consists of a 2D (6,3) network in which [(eta5-C5Me5)MoS3Cu3] cores serve both a T-shaped three-connecting node and an angular two-connecting node to interconnect other equivalent units through single bpe bridges, double bpe bridges, and mu-NCS bridges. Compound 3 has a 3D diamondlike framework in which each [(eta5-C5Me5)MoS3Cu3] core, acting as a tetrahedral connecting node, links four other neighboring units by 1,4-pyz bridges and mu-NCS bridges. Compound 4 contains a honeycomb 2D (6,3)core(6,3)tpt network in which each cluster core, serving a trigonal-planar three-connecting node, links three pairs of equivalent cluster cores via three tpt lignads. Compound 5 has a rare scalelike 2D (4,62)core(42,62)ligand network in which each cluster core acts as a T-shaped three-connecting node to link with other equivalent ones through mu-NCS bridges and H2tpyp (or Cu-tpyp) ligands. The results showed that the formation of the four different multidimensional topological structures was evidently affected by the symmetry of the ligands used. In addition, the third-order nonlinear optical properties of 1-5 in aniline were also investigated by using Z-scan techniques at 532 nm.  相似文献   

13.
Synthesis of redox-active bis-pyridine ligand, 4′,5′-bis(methylthio)-4,5-bis(2-pyridylethynyl)tetrathiafulvalene (1) has been carried out in moderate yield starting from the corresponding diiodide. Bis(pyridylethynyl)-TTF 1 forms 1:1 complexes with Cu(I) and Cu(II) salts. Occurrence of the charge transfer from the TTF moiety to the copper atom was found to depend on the environment of copper atom.  相似文献   

14.
Density functional theory (DFT) calculations show the higher energy HOMO (highest occupied molecular orbital) orbitals of four iron(II) diimine complexes are metal centered and the lower energy LUMO (lowest unoccupied molecular orbitals) are ligand centered. The energy of the orbitals correlates with electrochemical redox potentials of the complexes. Time-dependent density functional theory (TDDFT) calculations reveal ligand centered (LC) and metal-to-ligand charge transfer (MLCT) at higher energy than experimentally observed. TDDFT calculations also reveal the presence of d-d transitions which are buried under the MLCT and LC transitions. The difference in chemical and photophysical behavior of the iron complexes compared to that of their ruthenium analogues is also addressed.  相似文献   

15.
Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured phosphorescence bands in compounds 3-5 strongly suggest emissive states of mixed (3)MLCT/(3)LLCT character. Density functional theory (DFT) calculations have been carried out to gain insight on the frontier orbitals, and to rationalize the electrochemical and photophysical properties of the compounds based on their electronic structures.  相似文献   

16.
Synthesis and optical properties of metallo-supramolecular polymers   总被引:1,自引:0,他引:1  
Metal-ligand interactions between metal ions, such as Zn2+, and ditopic low-molecular weight conjugated monomers, which utilize the 2,6-bis(1'-methylbenzimidazolyl)pyridine ligand, lead to the formation of supramolecular conjugated polymers with interesting optical properties.  相似文献   

17.
Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe the electronic structures of O(h)-MCl(6)(2-) (M = Ti, Zr, Hf, U) and C(4v)-UOCl(5)(-), and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl(6)(2-). For the MCl(6)(2-), where transitions into d orbitals of t(2g) symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl(6)(2-)) to 10.3(5)% (ZrCl(6)(2-)), 12(1)% (HfCl(6)(2-)), and 18(1)% (UCl(6)(2-)). Chlorine K-edge XAS spectra of UOCl(5)(-) provide additional insights into the transition assignments by lowering the symmetry to C(4v), where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl(6)(2-), the XAS data suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl(6)(2-) and UOCl(5)(-), the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.  相似文献   

18.
Photolysis of 2,6-bis(4'-azidophenyl)-4-phenylpyridine in 2-methyltetrahydrofuran (2MTHF) glass at 7 K leads to quintet 2,6-bis(4'-nitrenophenyl)-4-phenylpyridine as a mixture of rotational isomers. The electron spin resonance (ESR) spectrum of this mixture of rotamers shows a considerable broadening of many transitions in the range of 0-5000 G and cannot be reproduced by computer simulations solely based on the tuning of the spin Hamiltonian parameters g, D(Q), and E(Q) alone or on predictions of DFT calculations. The best modeling of the experimental ESR spectrum is obtained only when the large line-broadening parameter of Γ(E(Q)) = 1200 MHz along with the spin Hamiltonian g = 2.003, D(Q) = 0.154 cm(-1), and E(Q) = 0.050 cm(-1) is used in the spectral simulations. The most accurate theoretical estimations of the magnetic parameters of the dinitrene in a 2MTHF glass are obtained from the B3LYP/6-311+G(d,p)+PBE/DZ/COSMO calculations of the spin-spin coupling parameters D(SS) and E(SS). Such calculations overestimate the E(Q) and D(Q) values of the dinitrene just by 1% and 10%, respectively, demonstrating that contributions of the spin-orbit coupling parameters D(SOC) and E(SOC) to the total D(Q) and E(Q) values are negligibly small. The research shows that ESR studies of polynuclear high-spin nitrenes, obtained by photolysis of rotational isomers of the starting azides, can only be successful if large E(Q) strain effects are taken into account in the spectral simulations.  相似文献   

19.
A series of discrete compounds and supramolecular polymers were synthesized by self-assembly of dithioether building blocks and HAuCl4.3H2O. In complexes 1 {[AuL(1-Me)Cl], where L(1-Me) is bis(methylthio)methane} and 2 {[Au2L(2-Ph)Cl2], where L(2-Ph) is 1,2-bis(phenylthio)ethane}, adjacent units are connected via aurophilic interactions. Complex 1, a one-dimensional (1D) supramolecular polymer, and complex 2, a two-dimensional supramolecular network, both feature nearly linear [Au-Au-](infinity) chains. Complexes 4a, 4b, and 4c, all of which contain 1,3-bis(phenylthio)propane (L(3-Ph)), are polymorphs having the composition [Au2L(3-Ph)Cl2]. Complex 3 {[Au2L(1-Ph)Cl2], where L(1-Ph) is bis(phenylthio)methane}and complexes 4a and 4b consist of nearly identical 1D supramolecular polymers formed through Au-Au interactions. The third polymorph, 4c, is a molecular complex, as it does not have metal-metal interactions. Complex 5 {[Au2L(4-Ph)Cl2], where L(4-Ph) is 1,4-bis(phenylthio)butane} is also molecular. UV-vis spectra showed that the absorption bands of these complexes are allowed ligand-centered transitions between 230 and 260 nm. Complexes 1, 2, and 6 {[AuL(3-Me)Cl], where L(3-Me) is 1,3-bis(methylthio)propane} exhibited solid-state luminescence at 5 K with vibronic progressions and band maxima at approximately 570 nm. It is suggested that complex 6 contains [Au-Au-](infinity) chains.  相似文献   

20.
A series of new sterically hindered bridged ligand 4,4-methylene-N,N-bis(phenyl-2-pyridylmethylene)-bis(2,6-dialkylanil)s was efficiently synthesized by the condensation reaction of 4,4-methylene-bis(2,6-disubstituted aniline) and benzoyl pyridine. They easily coordinated with Ag(I) to form Ag(I) complexes. The structure of complex [Ag2L42][ClO4]2 was determined by the single X-ray crystallographic analysis, and the double-helical asymmetric unit containing two [Ag2L42] moieties was interconnected with the adjacent unit through hydrogen bonds to form a helical supramolecular architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号