首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Reaction of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) in the mixed-solvent system H(2)O/CH(3)CN (pH = 5) resulted in the formation of the tetranuclear cluster (NH(4))(4)[Mo(4)(VI)SO(16)] x H(2)O (1), while the same reaction in acidic aqueous solution (pH = 5) yielded (NH(4))(4)[Mo(5)(VI)S(2)O(21)] x 3H(2)O (2). Compound {(H(2)bipy)(2)[Mo(5)(VI)S(2)O(21)] x H(2)O}(x) (3) was obtained from the reaction of aqueous acidic solution of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) (pH = 2.5) and 4,4'-bipyridine (4,4'-bipy). The mixed metal/sulfite species (NH(4))(7)[Co(III)(Mo(2)(V)O(4))(NH(3))(SO(3))(6)] x 4H(2)O (4) was synthesized by reacting Na(2)Mo(VI)O(4) x 2H(2)O with CoCl(2) x 6H(2)O and (NH(4))(2)SO(3) with precise control of pH (5.3) through a redox reaction. The X-ray crystal structures of compounds 1, 2, and 4 were determined. The structure of compound 1 consists of a ring of four alternately face- and edge-sharing Mo(VI)O(6) octahedra capped by the trigonal pyramidal sulfite anion, while at the base of the Mo(4) ring is an oxo group which is asymmetrically shared by all four molybdenum atoms. Compound 3 is based on the Strandberg-type heteropolyion [Mo(5)(VI)S(2)O(21)](4-), and these coordinatively saturated clusters are joined by diprotonated 4,4'-H(2)bipy(2+) through strong hydrogen bonds. Compound 3 crystallizes in the chiral space group C2. The structure of compound 4 consists of a novel trinuclear [Co(III)Mo(2)(V)SO(3)(2-)] cluster. The chiral compound 3 exhibits nonlinear optical (NLO) and photoluminescence properties. The assignment of the sulfite bands in the IR spectrum of 4 has been carried out by density functional calculations. The cobalt in 4 is a d(6) octahedral low-spin metal atom as it was evidenced by magnetic susceptibility measurements, cw EPR, BVS, and DFT calculations. The IR and solid-state UV-vis spectra as well as the thermogravimetric analyses of compounds 1-4 are also reported.  相似文献   

2.
Reaction of [Os(VI)(N)(L(1))(Cl)(OH(2))] (1) with CN(-) under various conditions affords (PPh(4))[Os(VI)(N)(L(1))(CN)(Cl)] (2), (PPh(4))(2)[Os(VI)(N)(L(2))(CN)(2)] (3), and a novel hydrogen cyanamido complex, (PPh(4))(2)[Os(III){N(H)CN}(L(3))(CN)(3)] (4). Compound 4 reacts readily with both electrophiles and nucleophiles. Protonation and methylation of 4 produce (PPh(4))[Os(III)(NCNH(2))(L(3))(CN)(3)] (5) and (PPh(4))[Os(III)(NCNMe(2))(L(3))(CN)(3)] (6), respectively. Nucleophilic addition of NH(3), ethylamine, and diethylamine readily occur at the C atom of the hydrogen cyanamide ligand of 4 to produce osmium guanidine complexes with the general formula [Os(III){N(H)C(NH(2))NR(1)R(2)}(L(3))(CN)(3)](-) , which have been isolated as PPh(4) salts (R(1) = R(2) = H (7); R(1) = H, R(2) = CH(2)CH(3) (8); R(1) = R(2) = CH(2)CH(3) (9)). The molecular structures of 1-5 and 7 and 8 have been determined by X-ray crystallography.  相似文献   

3.
We report the synthesis and characterization of five novel Mo-containing polyoxometalate (POM) bisphosphonate complexes with nuclearities ranging from 4 to 12 and with fully reduced, fully oxidized, or mixed-valent (Mo(V), Mo(VI)) molybdenum, in which the bisphosphonates bind to the POM cluster through their two phosphonate groups and a deprotonated 1-OH group. The compounds were synthesized in water by treating [Mo(V)(2)O(4)(H(2)O)(6)](2+) or [Mo(VI)O(4)](2-) with H(2)O(3)PC(C(3)H(6)NH(2))OPO(3)H(2) (alendronic acid) or its aminophenol derivative, and were characterized by single-crystal X-ray diffraction and (31)P NMR spectroscopy. (NH(4))(6)[(Mo(V)(2)O(4))(Mo(VI)(2)O(6))(2)(O(3)PC(C(3)H(6)NH(3))OPO(3))(2)]·12H(2)O (1) is an insoluble mixed-valent species. [(C(2)H(5))(2)NH(2)](4)[Mo(V)(4)O(8)(O(3)PC(C(3)H(6)NH(3))OPO(3))(2)]·6H(2)O (2) and [(C(2)H(5))(2)NH(2)](6)[Mo(V)(4)O(8)(O(3)PC(C(10)H(14)NO)OPO(3))(2)]·18H(2)O (4) contain similar tetranuclear reduced frameworks. Li(8)[(Mo(V)(2)O(4)(H(2)O))(4)(O(3)PC(C(3)H(6)NH(3))OPO(3))(4)]·45H(2)O (3) and Na(2)Rb(6)[(Mo(VI)(3)O(8))(4)(O(3)PC(C(3)H(6)NH(3))OPO(3))(4)]·26H(2)O (5) are alkali metal salts of fully reduced octanuclear and fully oxidized dodecanuclear POMs, respectively. The activities of 2-5 (which are water-soluble) against three human tumor cell lines were investigated in vitro. Although 2-4 have weak but measurable activity, 5 has IC(50) values of about 10 μM, which is about four times the activity of the parent alendronate molecule on a per-alendronate basis, which opens up the possibility of developing novel drug leads based on Mo bisphosphonate clusters.  相似文献   

4.
We investigate the reactivity of MoO(4)(2-) toward six organoammonium cations (+)(Me(3-x)H(x)N)(CH(2))(2)(NH(y)Me(3-y))(+) (x, y = 1-3) at different synthesis temperatures ranging from 70 to 180 °C. A total of 16 hybrid organic-inorganic materials have been synthesized at an initial pH of 2, via ambient pressure and hydrothermal routes, namely, (H(2)en)[Mo(3)O(10)]·H(2)O (1), (H(2)en)[Mo(3)O(10)] (2), (H(2)en)[Mo(5)O(16)] (3), (H(2)MED)(2)[Mo(8)O(26)]·2H(2)O (4), (H(2)MED)[Mo(5)O(16)] (5), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (6), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (7), (N,N'-H(2)DMED)(2)[Mo(8)O(26)] (8), (N,N'-H(2)DMED)[Mo(5)O(16)] (9), (H(2)TriMED)(2)[Mo(8)O(26)]·4H(2)O (10), (H(2)TriMED)(2)[Mo(8)O(26)]·2H(2)O (11), (H(2)TriMED)[Mo(7)O(22)] (12), (H(2)TMED)(2)[Mo(8)O(26)]·2H(2)O (13), (H(2)TMED)(2)[Mo(8)O(26)] (14), (H(2)TMED)(2)[Mo(8)O(26)] (15), and (H(2)TMED)[Mo(7)O(22)] (16). All of these compounds contain different polyoxomolybdate (Mo-POM) blocks, i.e., discrete β-[Mo(8)O(26)](4-) blocks in 6, 10, 13, 14, (1)/(∞)[Mo(3)O(10)](2-), and (1)/(∞)[Mo(8)O(26)](4-) polymeric chains in 1, 2, 4, 7, 8, and 15, respectively, and (2)/(∞)[Mo(5)O(16)](2-) and (2)/(∞)[Mo(7)O(22)](2-) layers in 3, 5, 9, 12, and 16, respectively. The structures of 5, 9, and 14 have been resolved by single-crystal X-ray analyses. The characterization of the different Mo-POM blocks in 1-16 by Fourier transform Raman spectroscopy is reported. The impact of the synthesis temperature on both the composition and topology of the Mo-POM blocks is highlighted.  相似文献   

5.
Three supramolecular materials based on different poly(oxomolybdophosphate) clusters, (H(2)imi)(6)(Himi)(4)[{Sr(H(2)O)(4)}(2){Sr ? P(6)Mo(4)(V)Mo(14)(VI)O(73)}(2)]·17H(2)O (1), (H(2)(4,4'-bpy))(2)[Cu(2)Sr(2)Mo(12)O(24)·(OH)(6)(H(2)O)(6)(H(2)PO(4))(2)(HPO(4))(2)(PO(4))(4)]·5H(2)O (2), and (H(2)bim)(H(2)bim)[SrP(2)Mo(5)O(23)(H(2)O)(3)]·2H(2)O (3) (imi = imidazole, 4,4'-bpy = 4,4'-bipyridine, and bim = 2,2'-biimidazole), have been hydrothermally synthesized and structurally characterized by the elemental analysis, TG, IR, UV-vis, XPS and the single-crystal X-ray diffraction. Compound 1 is made up of unusual basket-shape [Sr ? P(6)Mo(18)O(73)](10-) cages linked by [Sr(H(2)O)(4)](2+) fragments to yield unprecedented dimeric chains, which represent the first 1-D assemblies of basket-type POMs. Compound 2 exhibits a novel string constructed from sandwich-like [Cu(P(4)Mo(6)O(31))(2)] units and {Sr(2)Cu} trinuclear linkers. Compound 3 is the first chain of Strandberg-type polyoxoanions connected by Sr(2+) cations. All the 1-D chains are further packed into various 3-D supramolecular assemblies via strong hydrogen-bonding interactions. The electrochemical and electrocatalysis behavior of 1, 2, and 3-CPE have been investigated in detail.  相似文献   

6.
Two new compounds containing the title diphosphono-polyoxometalate anion and diprotonated ethylenediamine (enH(2)) or piperazine (ppzH(2)) countercations have been hydrothermally synthesized and structurally characterized ((enH(2))(4)[Mo(7)O(16)(O(3)PCH(2)PO(3))(3)].7H(2)O, triclinic, P(-)1, Z = 2, a = 10.3455(7) A, b = 13.136(1) A, and c = 20.216(3) A, alpha = 93.247(6) degrees, beta = 96.434(6) degrees, and gamma = 111.900(6) degrees; (ppzH(2))(4)[Mo(7)O(16)(O(3)PCH(2)PO(3))(3)].8H(2)O, triclinic, P(-)1, Z = 2, a = 13.255(2) A, b = 13.638(2) A, and c = 16.874(4) A, alpha = 93.20(2) degrees, beta = 101.27(2) degrees, and gamma = 105.87(1) degrees). The anion is a ring of three pairs of edge-sharing octahedra of Mo(V)O(6) (with Mo(V)-Mo(V) bonds) that share corners with each other. The diphosphonate groups connect the pairs at the periphery. The ring is "capped" by a tetrahedron of Mo(VI)O(4). According to magnetic measurements, the compounds are diamagnetic.  相似文献   

7.
The hydrothermal reactions of a molybdate source, a nickel(II) salt, tetra-2-pyridylpyrazine (tpyprz), and organodiphosphonic acids H(2)O(3)P(CH(2))(n)()PO(3)H(2) (n = 1-5) of varying tether lengths yielded a series of organic-inorganic hybrid materials of the nickel-molybdophosphonate family. A persistent characteristic of the structural chemistry is the presence of the [Mo(5)O(15)(O(3)PR)(2)](4)(-) cluster as a molecular building block, as noted for the one-dimensional materials [[Ni(2)(tpyprz)(2)]Mo(5)O(15)[O(3)P(CH(2))(4)PO(3)]]x6.65H(2)O (6x6.65H(2)O) and [[Ni(2)(tpyprz)(2)]Mo(5)O(15)[O(3)P(CH(2))(5)PO(3)]]x3.75H(2)O (8x3.75H(2)O), the two-dimensional phases [[Ni(4)(tpyprz)(3)][Mo(5)O(15)(O(3)PCH(2)CH(2)PO(3))](2)]x23H(2)O (3x23H(2)O) and [[Ni(3)(tpyprz)(2)(H(2)O)(2)](Mo(5)O(15))(Mo(2)O(4)F(2))[O(3)P(CH(2))(3)PO(3)](2)]x8H(2)O (5x8H(2)O), and the three-dimensional structures [[Ni(2)(tpyprz)(H(2)O)(3)]Mo(5)O(15)[O(3)P(CH(2))(3)PO(3))]]xH(2)O (4xH(2)O) and [[Ni(2)(tpyprz)(H(2)O)(2)]Mo(5)O(15) [O(3)P(CH(2))(4)PO(3)]]x2.25H(2)O (7x2.25H(2)O). In the case of methylenediphosphonic acid, the inability of this ligand to tether adjacent pentanuclear clusters precludes the formation of the common molybdophosphonate building block, manifesting in contrast a second structural motif, the trinuclear [(Mo(3)O(8))(x)(O(3)PCH(2)PO(3))(y)] subunit of [[Ni(tpyprz)(H(2)O)(2)](Mo(3)O(8))(2) (O(3)PCH(2)PO(3))(2)] (1) which had been previously observed in the corresponding methylenediphosphonate phases of the copper-molybdophosphonate family. Methylenediphosphonic acid also provides a second phase, [Ni(2)(tpyprz)(2)][Mo(7)O(21)(O(3)PCH(2)PO(3))]x3.5H(2)O (9x5H(2)O), which contains a new heptamolybdate cluster [Mo(7)O(21)(O(3)PCH(2)PO(3))](4)(-) and a cationic linear chain [Ni(tpyprz)](n)(4n+) substructure. The structural chemistry of the nickel-molybdophosphonate series contrasts with that of the corresponding copper-molybdophosphonate materials, reflecting in general the different coordination preferences of Ni(II) and Cu(II). Consequently, while the Cu(II)-organic complex building block of the copper family is invariably the binuclear [Cu(2)(tpyprz)](4+) subunit, the Ni(II) chemistry with tpyprz exhibits a distinct tendency toward catenation to provide [Ni(3)(tpyprz)(2)](6+), [Ni(4)(tpyprz)(3)](8+), and [Ni(tpyprz)](n)(4n+) building blocks as well as the common [Ni(2)(tpyprz)](4+) moiety. This results in a distinct structural chemistry for the nickel(II)-molybdophosphonate series with the exception of the methylenediphosphonate derivative 1 which is isostructural with the corresponding copper compound [[Cu(2)(tpyprz)(H(2)O)(2)](Mo(3)O(8))(2)(O(3)PCH(2)PO(3))] (2). The structural chemistry of the nickel(II) series also reflects variability in the number of attachment sites at the molybdophosphonate clusters, in the extent of aqua ligation to the Ni(II) tpyprz subunit, and in the participation of phosphate oxygen atoms as well as molybdate oxo groups in linking to the nickel sites.  相似文献   

8.
Lu X  Shi X  Min T 《Inorganic chemistry》2011,50(6):2175-2181
Nanoaggregates such as nanowires, nanoparticles, nanotubules, and nanoribbons were prepared from bulk crystals, which are shaped as needles (1), blocks (2), tubules (3α), and plates (3β), respectively, by grinding and ultrasonication. Nanowires have diameters of approximately 2 nm, lengths of thousands of nanmeters, and the distance between adjacent nanowires is approximately 2 nm. The diameters of nanoparticles range from 3 to 5 nm. Nanotubules display diameters of 70 nm and lengths of thousands of nanometers, and nanoribbons exhibit widths of approximately 50 nm and lengths of hundreds of nanometers. All of the bulk crystals have been synthesized by the wet chemical method. Single-crystal X-ray diffraction reveals that crystal 1 is constituted by infinite one-dimensional {[NH(3)CH(2)CH(NH(2))CH(3)](C(6)H(4)O(2))[μ(2)-OC(6)H(4)O](Mo(VI)-O-Na-O)[NH(2)CH(2)CH(NH(2))CH(3)]}(n) (1), which acts as a parallel aligned quantum wire forming lamellas that assemble themselves into multilayered architecture. Crystal 2 consists of discrete [NH(3)CH(2)CH(NH(2))CH(3)](2)[Mo(VI)O(2)(O(2)C(6)H(4))(2)] (2), which presents as quantum particles and repeats itself along a three-dimensional crystal lattice. Crystal 3α, formed under 5 °C, and 3β, crystallized above 10 °C, are both composed of (NH(3)CH(2)CH(2)NH(2))(2)[Mo(VI)O(2)(O(2)C(6)H(4))(2)](NH(2)CH(2)CH(2)NH(2))(0.5) (3) but are packed in different ways. In crystal 3α, four [Mo(VI)O(2)(O(2)C(6)H(4))(2)](2-) circle into a quantum tube that is further assembled into multitubular architecture. However, in crystal 3β, two [Mo(VI)O(2)(O(2)C(6)H(4))(2)](2-) form a bilayered quantum lamellar motif that is piled into multilayered architecture. TEM reveals that all of the morphologies of the nanoaggregates are associated with the structures of the quantum motifs in their crystal lattices, which provide successful and effective access to assemble controlled nanostructures from quantum motifs of fine-desired and well-ordered bulk crystals. The technology of grinding and ultrasonication to prepare nanoaggregates is simple and available.  相似文献   

9.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

10.
Three organic-inorganic hybrid copper-lanthanide heterometallic germanotungstates, {[Cu(en)(2)(H(2)O)] [Cu(3)Eu(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (1), {[Cu(en)(2)(H(2)O)][Cu(3)Tb(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (2) and {[Cu(en)(2)(H(2)O)][Cu(3)Dy(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·10H(2)O (3) and three polyoxometalate hybrids built by lanthanide-containing germanotungstates and copper-ethylendiamine complexes, Na(2)H(6)[Cu(en)(2)(H(2)O)](8){Cu(en)(2)[La(α-GeW(11)O(39))(2)](2)}·18H(2)O (4), K(4)H(2)[Cu(en)(2)(H(2)O)(2)](5)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Pr(α-GeW(11)O(39))(2)](2)}·16H(2)O (5) and KNa(2)H(7)[enH(2)](3)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Er(α-GeW(11)O(39))(2)](2)}·15H(2)O (6) (en = ethylenediamine) have been hydrothermally synthesized and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. 1-3 are essentially isomorphous and their main skeletons display the interesting dimeric motif {[Cu(3)Ln(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)(4-), which is constructed from two {Cu(3)LnO(4)} cubane anchored monovacant [α-GeW(11)O(39)](8-) fragments through two W-O-Ln-O-W linkers. The primary backbones of 4-6 exhibit the tetrameric architecture {Cu(en)(2)[Ln(α-GeW(11)O(39))(2)](2)}(24-) built by two 1?:?2-type [Ln(α-GeW(11)O(39))(2)](13-) moieties and one [Cu(en)(2)](2+) bridge, albeit they are not isostructural. To our knowledge, 1-6 are rare polyoxometalate derivatives consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. 1 exhibits antiferromagnetic coupling interactions within the {Cu(3)EuO(4)} cubane units, while 2 and 3 display dominant ferromagnetic interactions between the Tb(III)/Dy(III) and Cu(II) cations. The room-temperature solid-state photoluminescence properties of 1-3 have been investigated.  相似文献   

11.
Four new organically-directed bismuth sulfates, (C(2)N(2)H(10))(3)[Bi(2)(SO(4))(6)(H(2)O)(2)].4H(2)O (), (C(5)N(2)H(14))[Bi(SO(4))(2)(HSO(4))(H(2)O)].H(2)O (), (C(4)N(3)H(16))[Bi(SO(4))(3)(H(2)O)] () and (C(6)N(4)H(22))[Bi(2)(SO(4))(5)(H(2)O)(2)].4H(2)O () have been synthesized and structurally characterized by single-crystal X-ray diffraction analysis. Four compounds were constructed from strictly alternating BiO(n) and SO(4) polyhedra. and both exhibit similar infinite courrgated anionic layers with 8-membered ring windows, shows a new 1D ladder-like chain containing 4-membered rings, while possesses a new flat layer with 12-membered ring windows. The diverse linking fashions of the five-connected Bi nodes and the mono-, bi- or tri-connected S nodes form unique Bi-S-Bi topologies. Their fluorescent properties are also reported.  相似文献   

12.
Radius U  Attner J 《Inorganic chemistry》2004,43(26):8587-8599
The complex (HNEt(3))[MoCl(NCMe)(Calix)] (1), prepared from the reaction of [MoCl(4)(NCMe)(2)] with p-tert-butylcalix[4]arene, H(4)Calix, in the presence of triethylamine, has been used as a source of the d(2)-[Mo(NCMe)(Calix)] fragment. Complex 1 is readily oxidized with PhICl(2) to afford the molybdenum(VI) dichloro complex [MoCl(2)(Calix)] (2). Both complexes are a convenient entry point into molybdenum(VI) and molybdenum(IV) calixarene chemistry. The reaction of 1 with trimethylphosphine and pyridine in the presence of catalytic amounts [Ag(OTf)] led to the formation of neutral d(2) complexes [Mo(PMe(3))(NCMe)(Calix)] (3) and [Mo(NC(5)H(5))(NCMe)(Calix)] (4). The role of the silver salt in the reaction mixture is presumably the oxidation of the chloromolybdate anion of 1 to give a reactive molybdenum(V) species. The same reactions can also be initiated with ferrocenium cations such as [Cp(2)Fe](BF(4)). Without the presence of coordinating ligands, the dimeric complex [[Mo(NCMe)(Calix)](2)] (5) was isolated. The reaction of 1 with Ph(2)CN(2) led to the formation of a metallahydrazone complex [Mo(N(2)CPh(2))(NCMe)(Calix)] (6), in which the diphenyldiazomethane has been formally reduced by two electrons. Molybdenum(VI) complexes were also obtained from reaction of 1 with azobenzene and sodium azide in the presence of catalytic amounts of silver salt. The reaction with azobenzene led under cleavage of the nitrogen nitrogen bond to an imido complex [Mo(NPh)(NCMe)(Calix)] (7), whereas the reaction with sodium azide afforded the mononuclear molybdenum(VI) nitrido complex (HNEt(3))[MoN(Calix)] (8).  相似文献   

13.
The photolytic kinetic properties of a new series of intramolecular bridged alkyl cobaloxime complexes Br(O-C(3)H(6)-(dmgH))(dmgH))Co(III)(2), [H(2)O(O-C(3)H(6)-(dmg))(dmgH(2))]Co(III)[ClO(4)(3), ]Py(O-C(3)H(6)-(dmg))(dmgH(2))[Co(III)]ClO(4)(4), [Bzm(O-C(3)H(6)-(dmg))(dmgH(2))]Co(III)[ClO(4)(5) and ]Im(O-C(3)H(6)-(dmg))(dmgH(2))[Co(III)]ClO(4)(6) and their precursor aqua-(3-bromopropyl)cobaloximes (1) were investigated by UV-Vis spectroscopy. The products of photolytic solutions were characterized by both ESI-MS and (1)H-NMR techniques. Our results revealed a carbon-center radical that is produced from Co-C bond cleavage under photolysis might be linked to the equatorial ligand and thus retained in the proximity of Co(II)-complex. The thermo-gravimetric analysis of complex 2 gives the same conclusion.  相似文献   

14.
Reactions of the complex [MoCl(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1) (phen=1,10-phenanthroline) with potassium arylamides were used to synthesize the amido complexes [Mo(N(R)Ar)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (R=H, Ar=Ph, 2 a; R=H, Ar=p-tolyl, 2 b; R=Me, Ar=Ph; 2 c). For 2 b the Mo-N(amido) bond length (2.105(4) A) is consistent with it being a single bond, with which the metal attains an 18-electron configuration. The reaction of 2 b with HOTf affords the amino complex [Mo(eta(3)-C(3)H(4)-Me-2)(NH(2)(p-tol))(CO)(2)(phen)]OTf (3-OTf). Treatment of 3-OTf with nBuLi or KN(SiMe(3))(2) regenerates 2 b. The new amido complexes react with CS(2), arylisothiocyanates and maleic anhydride. A single product corresponding to the formal insertion of the electrophile into the Mo-N(amido) bond is obtained in each case. For maleic anhydride, ring opening accompanied the formation of the insertion product. The reaction of 2 b with maleimide affords [Mo(eta(3)-C(3)H(4)-Me-2)[NC(O)CH=CHC(O)](CO)(2)(phen)] (7), which results from simple acid-base metathesis. The reaction of 2 b with (p-tol)NCO affords [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(eta(2)-MoO(4))] (8), which corresponds to oxidation of one third of the metal atoms to Mo(VI). Complex 8 was also obtained in the reactions of 2 b with CO(2) or the lactide 3,6-dimethyl-1,4-dioxane-2,5-dione. The structures of the compounds 2 b, 3-OTf, [Mo(eta(3)-C(3)H(4)-Me-2)[SC(S)(N(H)Ph)](CO)(2)(phen)] (4), [Mo(eta(3)-C(3)H(4)-Me-2)[SC(N(p-tol))(NH(p-tol))](CO)(2)(phen)] (5 a), and [Mo(eta(3)-C(3)H(4)-Me-2)[OC(O)CH=CHC(O)(NH(p-tol))](CO)(2)(phen)] (6), 7, and 8 (both the free complex and its N,N'-di(p-tolyl)urea adduct) were determined by X-ray diffraction.  相似文献   

15.
A comprehensive study of the isomer-independent synthesis of TRIS ((HOCH(2))(3)CNH(2)) Mn-Anderson compounds from Na(2)MoO(4)·2H(2)O, via the corresponding octamolybdate species, is presented. Three octamolybdate salts of [Mo(8)O(26)](4-) in the β-isomer form, with tetramethylammonium (TMA), tetraethylammonium (TEA) and tetrapropylammonium (TPA) as the counter cation, were synthesised from the sodium molybdate starting material. Fine white powdery products for the three compounds were obtained, which were fully characterised by elemental analysis, TGA, solution and solid state Raman, IR and ESI-MS, revealing a set ratio of Na and organic cations for each of the three compounds; (TMA)(2)Na(2)[Mo(8)O(26)] (1), (TEA)(3)Na(1)[Mo(8)O(26)] (2) and (TPA)(2)Na(2)[Mo(8)O(26)] (3), and the analyses also confirmed that the three compounds all consisted of the octamolybdate in the β-isomeric form. ESI-MS analyses of 1, 2 and 3 show similar fragmentation for these β-isomers compared to the previously reported study for the α-isomer ((TBA)(4)[α-Mo(8)O(26)]) (A) in the synthesis of ((TBA)(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)]) (B), and compounds 1, 2 and 3 were successfully used to synthesise equivalent TRIS Mn-Anderson compounds: (TMA)(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (4), (TEA)(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (5) and (TPA)(2)Na(1)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (6), as well as Na(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (7). This is the first example where symmetric organically-grafted Mn-Anderson compounds have been synthesised in DMF from anything but the {Mo(8)O(26)} α-isomer.  相似文献   

16.
The compounds [Ni(en)(3)](2)[Re(6)Te(8)(CN)(6)].10H(2)O (1), [Ni(NH(3))(4)(en)](2)[Re(6)Te(8)(CN)(6)].2H(2)O (2), [Ni(NH(3))(2)(en)(2)][(Ni(en)(2))(3)(Re(4)Te(4)(CN)(12))(2)].38H(2)O (3), [Co(NH(3))(2)(en)(2)](2)[(Co(en)(2))Re(6)Te(8)(CN)(6)]Cl(2).H(2)O (4),and [(Zn(H(2)O)(en)(2))(Zn(en)(2))Re(6)Te(8)(CN)(6)].3H(2)O (5) (en = ethylenediamine) have been synthesized and characterized. Compounds 1, 4, and 5 have been synthesized by the diffusion of an aqueous (for 1 and 5) or an ammonia (for 4) solution of Cs(4)[Re(6)Te(8)(CN)(6)].2H(2)O into a glycerol solution of NiCl(2).6H(2)O (for 1), CoCl(2).6H(2)O (for 4), or ZnCl(2) (for 5). Compounds 2 and 3 have been synthesized by the reaction of an aqueous solution of Cs(4)[Re(6)Te(8)(CN)(6)].2H(2)O (for 2) or K(4)[Re(4)Te(4)(CN)(12)].5H(2)O (for 3) with an ammonia solution of Ni(en)(2)Cl(2). Compounds 1 and 2 are ionic whereas compounds 4 and 5 are one-dimensional polymers. Compound 3, a two-dimensional polymer, possesses hexagonal shaped channels of approximate diameter 10-12 A. Because the framework of compound 3 is robust, it is an attractive host for guest molecules of appropriate size and shape. The potential "guest" volume is about 37% of the unit cell volume.  相似文献   

17.
Interaction of [Ce(L(OEt))(2)(NO(3))(2)] (L(OEt)(-) = [Co(eta(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with (NH(4))(6)[Mo(7)O(24)] in water affords the cerium(iv)-containing oxomolybdenum cluster [H(4)(CeL(OEt))(6)Mo(9)O(38)], which exhibits a unique Ce(6)Mo(9)O(38) core structure.  相似文献   

18.
We have synthesized and structurally characterized three pyridylethylidene-functionalized diphosphonate-containing polyoxomolybdates, [{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](6-) (1), [{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](8-) (2), and [{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)](12-) (3). Polyanions 1-3 were prepared in a one-pot reaction of the dinuclear, dicationic {Mo(V)(2)O(4)(H(2)O)(6)}(2+) with 1-hydroxo-2-(3-pyridyl)ethylidenediphosphonate (Risedronic acid) in aqueous solution. Polyanions 1 and 2 are mixed-valent Mo(VI/V) species with open tetranuclear and hexanuclear structures, respectively, containing two diphosphonate groups. Polyanion 3 is a cyclic octanuclear structure based on four {Mo(V)(2)O(4)(H(2)O)} units and four diphosphonates. Polyanions 1 and 2 crystallized as guanidinium salts [C(NH(2))(3)](5)H[{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·13H(2)O (1a) and [C(NH(2))(3)](6)H(2)[{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·10H(2)O (2a), whereas polyanion 3 crystallized as a mixed sodium-guanidinium salt, Na(8)[C(NH(2))(3)](4)[{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)]·8H(2)O (3a). The compounds were characterized in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric and elemental analyses. The formation of polyanions 1 and 3 is very sensitive to the pH value of the reaction solution, with exclusive formation of 1 above pH 7.4 and 3 below pH 6.6. Detailed solution studies by multinuclear NMR spectrometry were performed to study the equilibrium between these two compounds. Polyanion 2 was insoluble in all common solvents. Detailed computational studies on the solution phases of 1 and 3 indicated the stability of these polyanions in solution, in complete agreement with the experimental findings.  相似文献   

19.
Five rare-earth–transition-metal (RE–TM) heterometal organic–inorganic hybrids based on Keggin-type silicotungstates and mixed ligands H2pzda (pzda=pyrazine-2,3-dicarboxylate) and en (en=ethylenediamine) (enH2)[Cu(en)2(H2O)]2{[Cu(en)2][Cu(en)2(H2O)][(α-SiW11 O39)RE(H2O)(pzda)]}2⋅n H2O (n≈4; RE=YIII ( 1 ), DyIII ( 2 ), YbIII ( 3 ), and LuIII ( 4 )) and [Cu(en)2(H2O)]2{[Cu(en)2]2[Cu(pzda)2][(α-H2SiW11O39)Ce(H2O)]2}⋅n H2O ( 5 ; n≈8) have been hydrothermally synthesized and structurally characterized. Compounds 1–5 all contain the dimeric mono-RE substituted Keggin [RE(α-SiW11O39)]210− subunits linked by H2pzda ligands. Interestingly, 1–4 exhibit discrete structures, in which the H2pzda ligand acts as a tetradentate ligand to bind the RE and Cu cations, whereas 5 displays a 1D double-chain architecture, in which the H2pzda ligand adopts a new pentadentate mode to connect the Ce and Cu cations. To our knowledge, 1–5 represent the first monovacant Keggin-type silicotungstates containing both RE–TM heterometals and mixed ligands. The luminescence of 2 is derived from the combination of the DyIII cations and H2pzda ligands, whereas the luminescence properties of 1 and 3–5 are attributable to the H2pzda ligands.  相似文献   

20.
The hydrothermal reactions of a Cu(II) starting material, a molybdate source, 2,2'-bipyridine or terpyridine, and the appropriate alkyldiphosphonate ligand yield two series of bimetallic organophosphonate hybrid materials of the general types [Cu(n)(bpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)] and [Cu(n)(terpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)]. The bipyridyl series includes the one-dimensional materials [Cu(bpy)(MoO(2))(H(2)O)(O(3)PCH(2)PO(3))] (1) and [[Cu(bpy)(2)][Cu(bpy)(H(2)O)](Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)CH(2)PO(3))].H(2)O (5.H(2)O) and the two-dimensional hybrids [Cu(bpy)(Mo(2)O(5))(H(2)O)(O(3)PCH(2)PO(3))].H(2)O (2.H(2)O), [[Cu(bpy)](2)(Mo(4)O(12))(H(2)O)(2)(O(3)PCH(2)CH(2)PO(3))].2H(2)O (3.2H(2)O), and [Cu(bpy)(Mo(2)O(5))(O(3)PCH(2)CH(2)CH(2)PO(3))](4). The terpyridyl series is represented by the one-dimensional [[Cu(terpy)(H(2)O)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)PO(3))].3H(2)O (7.3H(2)O) and the two-dimensional composite materials [Cu(terpy)(Mo(2)O(5))(O(3)PCH(2)PO(3))] (6) and [[Cu(terpy)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)PO(3))] (8). The structures exhibit a variety of molybdate building blocks including isolated [MoO(6)] octahedra in 1, binuclear subunits in 2, 4, and 6, tetranuclear embedded clusters in 3, and the prototypical [Mo(5)O(15)(O(3)PR)(2)](4-) cluster type in 5, 7, and 8. These latter materials exemplify the building block approach to the preparation of extended structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号