首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The neutral complexes [Rh(I)(NBD)((1S)-10-camphorsulfonate)] (2) and [Rh(I)((R)-N-acetylphenylalanate)] (4) reacted with bis-(diphenylphosphino)ethane (dppe) to form the cationic Rh(I)(NBD)(dppe) complexes, 5 and 6, respectively, accompanied by their corresponding chiral counteranions. Analogously, 4 reacted with 4,4-dimethylbipyridine to yield complex 7. Complexes 5 and 6 disproportionated in aprotic solvents to form the corresponding bis-diphosphine complexes 8 and 9, respectively. 8 was characterized by an X-ray crystal structure analysis. In order to form achiral Rh(I) complexes bearing chiral countercations new sulfonated monophosphines 13-16 with chiral ammonium cations were synthesized. Tris-triphenylphosphinosulfonic acid (H3TPPS, 11) was used to protonate chiral amines to yield chiral ammonium phosphines 14-16. Thallium-tris-triphenylphosphinosulfonate (Tl3TPPS, 12) underwent metathesis with a chiral quartenary ammonium iodide to yield the proton free chiral ammonium phosphine 13. Phosphines 15 and 16 reacted with [Rh(NBD)2]BF4 to afford the highly charged chiral zwitterionic complexes [Rh(NBD)(TPPS)2][(R)-N,N-dimethyl-1-(naphtyl)ethylammonium]5 (17) and [Rh(NBD)(TPPS)2][BF4][(R)-N,N-dimethyl-phenethylammonium]6 (18), respectively. Complexes 5, 6, and 18 were tested as precatalysts for the hydrogenation of de-hydro-N-acetylphenylalanine (19) and methyl-(Z)-(α)-acetoamidocinnamate (MAC, 20) under homogeneous and heterogeneous (silica-supported and self-supported) conditions. None of the reactions was enantioselective.  相似文献   

2.
An efficient synthetic method towards stereopure acyclic 1,5-dimethylalkane building blocks from methyl (2R)-3-hydroxy-2-methylpropionate (R)-1 (>99% ee) and methyl (2S)-3-hydroxy-2-methylpropionate (S)-1 (>99% ee) through a series of chemical transformations, including Julia–Kocienski olefination and diimide reduction, is described. Through this strategy, two fragments of β-d-mannosyl phosphomycoketide (C32-MPM) and four stereopure 1,5-dimethylalkane C10 chirons are prepared. These C32-MPM fragments and C10 chirons have shown great potential application as building blocks for the synthesis of highly methyl-branched natural products containing chiral oligoisoprenoid-like chains.  相似文献   

3.
Kin-ichi Oyama 《Tetrahedron》2004,60(9):2025-2034
We have succeeded in the first total synthesis of apigenin 7,4′-di-O-β-d-glucopyranoside (1a), a component of blue pigment, protodelphin, from naringenin (2). Glycosylation of 2 according to Koenigs-Knorr reaction provided a monoglucoside 4a in 80% yield, and this was followed by DDQ oxidation to give apigenin 7-O-glucoside (12a). Further glycosylation of 4′-OH of 12a with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl fluoride (5a) was achieved using a Lewis acid-and-base promotion system (BF3·Et2O, 2,6-di-tert-butyl-4-methylpyridine, and 1,1,3,3-tetramethylguanidine) in 70% yield, and subsequent deprotection produced 1a. Synthesis of three other chiral isomers of 1a, with replacement of d-glucose at 7 and/or 4′-OH by l-glucose (1b-d), and four chiral isomers of apigenin 7-O-β-glucosides (6a,b) and 4′-O-β-glucosides (7a,b) also proved possible.  相似文献   

4.
Tomomi Ikemoto 《Tetrahedron》2005,61(21):5043-5048
The sulfide 4 was treated with chiral acid in a mixture of toluene and methyl iso-butylketone to precipitate the salt, which reacted with 30% H2O2 for 3 weeks at rt. The resulting crystals were collected followed by recrystallization to give the salt of enantiometrically pure sulfoxide and chiral acid 7 in 72% yield and 98.1% de, which was led to chiral sulfoxide S-3 after neutralization. Sulfoxide S-3 was led to S-1a as the candidate for an orally active HIV-1 therapeutic agent.  相似文献   

5.
Asymmetric transfer hydrogenation of ketones with chiral molecular catalysts is realized to be one of the most magnificent tools to access chiral alcohols in organic synthesis. A new chiral phosphinite compound N,N′-bis[(1S)-1-benzyl-2-O-(diphenylphosphinite)ethyl]ethanediamide (1), has been synthesized by the reaction of chlorodiphenylphosphine with N,N′-bis[(1S)-1-benzyl-2-hydroxyethyl]ethanediamide under argon atmosphere. The oxidation of 1 with aqueous hydrogen peroxide, elemental sulfur or grey selenium in toluene gave the corresponding oxide 1a, sulfide 1b and selenide 1c, respectively. Pd, Pt and Ru complexes were obtained by the reaction of 1 with [MCl2(cod)] (M: Pd 1d, Pt 1e) and [Ru(p-cymene)Cl2]21f, respectively. All these new complexes were characterized by using NMR, FT-IR spectroscopies and microanalysis. Additionally, as a demonstration of their catalytic reactivity, the ruthenium complex 1f was tested as catalyst in the asymmetric transfer hydrogenation reactions of acetophenone derivatives with iPrOH was also investigated.  相似文献   

6.
The reaction between ZnCl2 and (S)-N-ethyl-N-phenyl-2-pyrrolidinemethanamine (S-EPP) as a chiral ligand affords [ZnCl2(S-EPP)], whose structure has been determined by X-ray crystallography. [ZnEt2(S-EPP)] has demonstrated high activity toward the polymerization of rac-lactide with a maximum turnover frequency (TOF) of 121. Despite the intended stereocontrol by employing a chiral ligand, however, the observed heterotacticity was limited to under 0.6. The MWDs of the PLAs were found to be modulated by changing the solvent or controlling the concentration of the monomer in the solution. The glass transition temperature (Tg) was critically dependent on the MW within the narrow MWD regime, but the dependence became significantly shallow when the MWD was broadened.  相似文献   

7.
In this paper we report on a efficient and flexible synthetic route towards the total syntheses of the dihydrocoumarine derivatives hydrangenol (1), phyllodulcin (1a) and macrophyllol (6b). The syntheses started with a readily available phosphonium salt 2 and suitable modified benzaldehydes 3/3a/3b resulting in 46 to 61% overall yields in three to four-steps sequences. The racemic products could be separated by chiral HPLC. The evidence of the (R)-enantiomer for sweetness could be demonstrated for 1a.  相似文献   

8.
Described is the asymmetric synthesis of the allylic alcohols 11 (85% ee), 15 (99% ee), 17 (93% ee), 19 (61% ee), and 21 (69% ee) through a Pd-catalyzed reaction of the unsymmetrical carbonates rac-10, rac-12, rac-14, rac-16, rac-18, and rac-20, respectively, with KHCO3 and H2O in the presence of bisphosphane 6. Similarly the allylic alcohols 23 (99% ee) and 25 (97% ee) have been obtained from the symmetrical carbonates rac-22 and rac-24, respectively. Reaction of the meso-biscarbonate 26 with H2O and Pd(0)/6 afforded alcohol 27 (96% ee), which was converted to the PG building block 32. The unsaturated bisphosphane 33 showed in the synthesis of alcohols 36, 37, and 39 a similar high selectivity as 6. The formation of alcohols 11, 15, and 17 involves an efficient dynamic kinetic resolution.  相似文献   

9.
The use of several chiral trifluoromethylated building blocks 1a, 1b, 9a and 9b was attempted to synthesize of syn-(3-trifluoromethyl)cysteine. A novel and efficient enantioselective synthesis of both enantiomers of syn-(3-trifluoromethyl)cysteine derivatives 12a and 12b was successfully achieved.  相似文献   

10.
A series of antimalarial chiral 1,2,4-trioxanes (1-8) were synthesised in high enantiomeric purities. Enantioselective addition of R2Zn reagent to 3-methyl-2-butenal catalysed by (+)-MIB or (−)-MIB yielded both the enantiomers of the chiral allylic alcohols 9-11 (90-98% ee), which were subjected to diastereoselective photooxygenation in the presence of tetraphenylporphine (TPP) to obtain (R,R)-threo- or (S,S)-threo-β-hydroperoxy alcohols (12-14). Reaction of β-hydroperoxy alcohols (12-14) with different cyclic ketones produced optically active trioxanes 1-8.  相似文献   

11.
The zinc bilinone (ZnBL) dimers 4 and 5 bearing chiral aliphatic spacers ((2S,4S)-2,4-pentanedioxy and (3S,5S)-2,6-dimethyl-3,5-heptanedioxy for 4 and 5, respectively) were newly prepared, and their conformational distribution was investigated. The 1H NMR and circular dichroism spectra revealed that the present dimers predominantly adopted the homohelicity conformation (MM and PP for 4 and 5, respectively), although the reference monomers with the corresponding subunit structures exhibited poor helicity enrichment. The helical twisting powers of these ZnBL dimers for a nematic liquid crystal (N-(4-methoxybenzylidene)-4-butylaniline, MBBA) were also investigated. With the dimers doped into MBBA, highly efficient chiral nematic induction was achieved. Especially, the dimer 5 exhibited the βM value of +1800 μm−1.  相似文献   

12.
1-Fluoroindan-1-carboxylic acid (FICA) (1) was designed and synthesized as its methyl ester (FICA Me ester) (4) in order to develop an efficient chiral derivatizing agent (CDA) which excels α-methoxy-α-(trifluoromethyl)phenylacetic acid (MTPA) in capability. FICA Me ester (4) was prepared by fluorination of methyl 1-hydroxyindan-1-carboxylate (3) with (diethylamino)sulfur trifluoride (DAST) and derived to the esters of racemic secondary alcohols by ester exchange reaction. The resulting ΔδF value was large in the case of 2-butyl ester of FICA (5a), whereas not detectable in the case of the corresponding MTPA ester (6a). The magnitude of the ΔδH values was similar to that of MTPA esters. The diastereomers of (R)-(−)-8-phenylmenthyl ester of FICA (5i) was separated and their 1H NMR analyses revealed that the concept of the modified Mosher's method was successfully applied to 5i.  相似文献   

13.
The enantioselective alkynylation of aldimines with terminal acetylenes catalyzed by chiral Cu(I) complexes with (R)-2,2′-di(2-aminoaryloxy)-1,1′-binaphthyl ligands (7) was examined. Chiral C2-symmetric N,N-ligands 7, which have primary aniline moieties, were readily prepared from inexpensive (R)-1,1′-binaphthol (BINOL) as a chiral source. In particular, the reaction of N-benzylidenebenzeneamine 1a with phenylacetylene 2a proceeded smoothly in the presence of 5 mol % of (CuOTf)2·C6H5CH3 and 10 mol % of (R)-7d at room temperature for 24 h, and the corresponding propargylamine 3a was obtained with up to 82% ee.  相似文献   

14.
Brian M. Bocknack 《Tetrahedron》2005,61(26):6266-6275
A practical enantioselective synthesis of chiral β-diketonate ligands 1a-1d, which are of ‘pseudo planar-chiral’ topology, is described. Additionally, the first chiral bis(diketonates) 2a-2c, ligands of C2-symmetry that are isoelectronic with respect to related salen ligand systems, have been prepared. Protocols for the metallation of ligands 1a-1d, 2b and 2c are reported.  相似文献   

15.
We have developed an efficient and a general approach to chiral 2-substituted N-tosylpiperidines starting from chiral α-substituted-N-tosylaziridines. Using this approach, we have synthesized (+)-coniine. The synthesis of chiral N-tosyl-2-piperidinylethanol 15 and ent-15, was achieved from l- and d-aspartic acids, respectively in few steps. Piperidine 15 was converted into 2-(2-hydroxysubstituted)piperidines of type 2 in optically active form. By applying this strategy, asymmetric syntheses of halosaline (R,R)-2a, (+)- and (−)-sedamine 2b, (+)- and (−)-allosedamine 2c, (+)- and (−)-sedridine 2d, (+)- and (−)-allosedridine 2e, (+)-tetraponerine T-3 3a, T-4 3c, T-7 3b, and T-8 3d have been achieved in high yields. These stereoisomers can be interconverted via Mitsunobu inversion in excellent yields.  相似文献   

16.
Lan He 《Tetrahedron》2005,61(35):8505-8511
This paper described an efficient synthetic strategy for chiral acyclic nucleoside analogues containing both the phenoxy components of some bioactive natural compounds and a heterocyclic base. The phenoxy components with adenine moiety were incorporated into the chiral acyclic nucleoside analogues through two key synthetic tactics. Chiron 5-(R)-menthyloxy-2(5H)-furanone 5 was obtained in good yield from the cheap starting material furfural via a valuable synthetic route. The asymmetric Michael addition of 5 with adenine and the subsequent reduction reaction afforded the key chiral intermediate, 2-(R)-(9′-adeninyl)-1,4-butanediol 8. The absolute configuration of 8 was established by X-ray crystallography. The intermolecular dehydration reaction between 2-(9′-adeninyl)-1,4-butanediol 8 and phenoxy components 9 on treatment with diethyl azodicarboxylate and triphenylphosphine was carried out to give the chiral acyclic nucleoside analogues 1a-1e. The regioselectivity of the reaction was established by NMR methods, especially through 13C NMR shifts and NOE effect observed in the target molecule 1c, as well as by HMBC/HMQC experiments. The target compounds were tested for inhibition of cytopathogenicity against different cancer cells and exhibited potential anticancer activity.  相似文献   

17.
Treatment of a BINOL-terpyridine compound with RuCl3 generates a Ru(II) complex (R)-6. This complex is found to be a novel multi-task catalyst capable of conducting a sequential oxidation and asymmetric alkyl addition to convert primary alcohols to chiral secondary alcohols. The terpyridine-Ru(II) site of (R)-6 catalyzes an efficient oxidation of primary alcohols to aldehydes which then undergo an enantioselective alkylation to generate chiral secondary alcohols when the BINOL site of (R)-6 is combined with ZnEt2 and Ti(OiPr)4.  相似文献   

18.
A concise enantioselective strategy for the synthesis of key PDE5 inhibitor 2 was developed in 5 and 6 steps using asymmetric hydrogenation and one-pot chiral auxiliary approaches, respectively. The synthesis features the use of imine 6 obtained through Bischler-Napieralsky reaction from amide 5. Absolute R configuration was introduced in (+)-7 by asymmetric transfer-hydrogenation reaction with Ru(II) catalyst followed by establishing the tricyclic pyrroloquinalone core using the Winterfeldt oxidation. Another alternative synthetic approach for the introduction of chirality in the molecule employed imine 6 and chloroformates of different chiral auxiliaries, which achieved N-acyliminium ion intermediates that were reduced in situ using PdCl2/Et3SiH protocol. These synthetic routes were applied in the total synthesis of promising male erectile dysfunction (MED) PDE5 inhibitor 1.  相似文献   

19.
Treatment of 2,2′-diacetoxy-1,1′-binaphthyl-6,6′-bis(ethyne), L-H2, with one equiv of trans-Pt(PEt3)2Cl2 led to a mixture of different sizes of chiral metallocycles [trans-(PEt3)2Pt(L)]n (n = 3-8, 1-6). Each of the chiral molecular polygons 1-6 was purified by silica-gel column chromatography and characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, MS, IR, UV-Vis, and circular dichroism (CD) spectroscopies, size exclusion chromatography, and microanalysis. Chiral molecular square 2 was also characterized by single-crystal X-ray diffraction. The acetyl groups of 2 were readily deprotected under mild conditions to generate 2a which possesses exposed chiral dihydroxy functional groups. The dihydroxy groups were functionalized with n-octadecyl chains or Fréchet-type dendrons to generate dendritic molecules built on a chiral molecular square core. This work shows the potential of generating interesting functional supramolecular systems based on Pt-alkynyl chiral molecular polygons.  相似文献   

20.
We have developed a practical synthesis of the chiral lactam as a new chiral building block for alkaloid synthesis. Lipase-catalyzed kinetic resolution of hydroxylactam 8, followed by isolation-racemization of the chiral acetoxylactam 9 provided the optically pure hydroxylactam 8 in 96.0% yield with >99% ee after five cycles of kinetic resolution-racemization process. Chemical transformation of (S)-hydroxylactam 8 furnished chiral (−)-2-epi-lentiginosine (1) in 20% yield in 10 steps with no loss of enantiomeric excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号