首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract— The acridine and phenanthridine hydroperoxides 3 and 7 were synthesized as photochemical hydroxyl radical sources for oxidative DNA damage studies. The generation of hydroxyl radicals upon UVA irradiation (Λ. = 350 nm) was verified by trapping experiments with 5,5-di-methyl-1-pyrroline N -oxide and benzene. The enzymatic assays of the damage in cell-free DNA from bacteriophage PM2 caused by the acridine and phenanthridine hydroperoxides 3 and 7 under near-UVA irradiation revealed a wide range of DNA modifications. Particularly, extensive single-strand break formation and DNA base modifications sensitive to formamidopyrimidine DNA glycosylase (Fpg protein) were observed. In the photooxida-tion of calf thymus DNA, up to 0.69±0.03% 8-oxo-7,8-dihydroguanine was formed by the hydroperoxides 3 and 7 on irradiation, whose yield was reduced up to 40% in the presence of the hydroxyl radical scavengers mannitol and fert-butanol. The acridine and phenanthridine hydroperoxides 3 and 7 also induce DNA damage through the type I photooxidation process, for which photoinduced electron transfer from 2'-deoxyguanosine to the singlet states of 3 and 7 was estimated by the Rehm-Weller equation to possess a negative Gibb's free energy of cα -5 kcal/ mol. Control experiments with the sensitizers acridine 1 and the acridine alcohol 4 in calf thymus and PM2 DNA confirmed the photosensitizing propensity of the UVA-ab-sorbing chromophores. The present study emphasizes that for the development of selective and efficient photochemical hydroxyl radical sources, chromophores with low photosensitizing ability must be chosen to avoid type I and type II photooxidation processes.  相似文献   

2.
Reactive oxygen species (ROS) can damage DNA. Although a number of single nucleobase lesions induced by ROS have been structurally characterized, only a few intrastrand cross-link lesions have been identified and characterized, and all of them involve adjacent thymine and guanine or adenine. In mammalian cells, the cytosines at CpG sites are methylated. On the basis of the similar reactivity of 5-methylcytosine and thymine toward hydroxyl radical and the similar orientation of adjacent thymine guanine (TG) and 5-methylcytosine guanine (mCG) in B-DNA, we predict that the cross-link lesion, which was identified in TG and has a covalent bond formed between the 5-methyl carbon atom of T and the C8 carbon atom of G, should also form at mCG site. Here, we report for the first time the independent generation of 5-(2'-deoxycytidinyl)methyl radical, and our results demonstrate that this radical can give rise to the predicted novel intrastrand cross-link lesion in dinucleoside monophosphates d(mCG) and d(GmC). Furthermore, we show that the cross-link lesion can also form in d(mCG) from gamma irradiation under anaerobic conditions.  相似文献   

3.
DNA damage profiles have been established in plasmid DNA using purified DNA repair enzymes and a plasmid relaxation assay, following exposure to UVC, UVB, UVA or simulated sunlight (SSL). Cyclobutane pyrimidine dimers (CPDs) are revealed as T4 endonuclease V-sensitive sites, oxidation products at purine and pyrimidine as Fpg- and Nth-sensitive sites, and abasic sites are detected by Nfo protein from Escherichia coli. CPDs are readily detected after UVA exposure, though produced 10(3) and 10(5) times less efficiently than by UVB or UVC, respectively. We demonstrate that CPDs are induced by UVA radiation and not by contaminating UVB wavelengths. Furthermore, they are produced at doses compatible with human exposure and are likely to contribute to the mutagenic specificity of UVA [E. Sage et al., Proc. Natl. Acad. Sci. USA 93 (1996) 176-180]. Oxidative damage is induced with a linear dose dependence, for each region of the solar spectrum, with the exception of oxidized pyrimidine and abasic sites, which are not detectable after UVB irradiation. The distribution of the different classes of photolesions varies markedly, depending on wavelengths. However, the unexpectedly high yield of oxidative lesions, as compared to CPDs, by UVA and SSL led us to investigate their production mechanism. An artificial formation of hydroxyl radicals is observed, which depends on the material of the sample holder used for UVA irradiation and is specific for long UV wavelengths. Our study sheds light on a possible artefact in the production of oxidative damage by UVA radiation. Meanwhile, after eliminating some potential sources of the artefact ratios of CPDs to oxidized purine of three and five upon irradiation with UVA and SSL, respectively, are still observed, whereas these ratios are about 140 and 200 after UVC and UVB irradiation.  相似文献   

4.
Abstract Visible irradiation of DNA-daunomycin solutions resulted in a decrease of viscosity of the DNA and an increase of the rate of denaturation of DNA in formaldehyde. These changes are consistent with the induction of single-strand breaks in the DNA, some of which pair to cause fragmentation of the DNA. The DNA damage increases with drug: nucleotide ratio up to 0.2 and is diminished beyond that range. The damage also increases with ionic strength up to 0.6 M and is diminished above that value. These results suggest that the non-intercalated form of the drug is involved in the photosensitization process. Radicals that are produced accompanying the degradation have been trapped by 5,5-dimeth-yl-l-pyrroline-1-oxide and identified as hydroxyl radicals from their ESR spectrum. The DNA photosensitized damage is completely inhibited when hydroxyl radicals are removed by the spin-trap, suggesting a direct role for the hydroxyl radicals in the DNA photosensitized degradation process. The implications of the photosensitized DNA damage and the production of hydroxyl radicals in this process are discussed with respect to the medical uses and chemotherapeutic role of daunomycin.  相似文献   

5.
A covalently closed, circular, supercoiled plasmid was exposed to singlet oxygen by a separated-surface sensitizer. For each exposure, the quantity of single oxygen entering the DNA target solution was estimated by its oxidation of histidine. After singlet oxygen exposure, some DNA samples were treated to disclose occult lesions. Agarose gel electrophoresis was then used to resolve the unrelaxed supercoils from the relaxed circular and linear species, and all bands were quantitated fluorometrically. Exposure of supercoiled plasmid DNA to singlet oxygen induced frank DNA strand breaks, alkali-labile sites (pH 12.5, 90 degrees C, 30 min), and piperidine-labile sites (0.4 M, 60 degrees C, 30 min), all in a dose-dependent manner. Yields of alkali-labile and piperidine-labile sites ranged from one to four times the frank strand break yield. Replacement of buffered H2O by buffered D2O as the DNA solvent for singlet oxygen exposures increased DNA lesion yields by a factor of 2.6 (averaged over lesion classes). Our data for the detection of frank strand breaks is at variance with published results from studies in which singlet oxygen was derived from a thermolabile endoperoxide dissolved in the DNA solution.  相似文献   

6.
The chemistry of the photoactivation of daunomycin–DNA complexes is reported and the mechanism is elucidated. We quantitatively assessed the type of DNA damage, such as strand breaks, oxidized bases, and abasic sites, that arise using a plasmid relaxation assay coupled with DNA repair endonucleases. Photoexcitation of daunomycin leads to oxidative DNA damage in a dose- and irradiation time-dependent manner and guanine-specific oxidized purines are substantially produced under these conditions. Oxidative DNA base damage was also inhibited by argon degassing, indicating that guanine-specific damage arises from an oxygen-dependent mechanism. In addition, photoexcitation of daunomycin–DNA complexes leads to superoxide anion radical formation. From these studies of the actual product formed, we conclude that a charge transfer is a main driving force of the mechanism.  相似文献   

7.
Abstract— Copper(II), in the presence of UV-B radiation(280–315 nm), can generate single-strand breaks in the sugar-phosphate backbone of pBR322 plasmid DNA. A low level of single-strand backbone breaks occurs in the presence of Cu(II) alone, but UV-B irradiation increases the rate by the more than 100-fold. Concomitant with the damage to the DNA backbone is a loss of transforming activity. Oxygen is required for generation of the single-strand breaks but not for the loss of transforming activity. A DNA glycosylase (Fpg), which participates in the repair of certain DNA nitrogenous base damage, does not repair plasmid DNA damaged by Cu(II). The hydroxyl radical scavenging compound DMSO is only somewhat effective at protecting the physical and biological properties of the DNA. These results with Cu(II) are compared to those obtained previously with pBR322 plasmid DNA in the presence of Fe(III) and UV-A.  相似文献   

8.
Photolysis of hydroxocobalamin in the presence of plasmid DNA (pBR322) results in DNA cleavage. Temporal control of hydroxyl radical production and DNA strand scission by hydroxocobalamin was demonstrated using a 2-deoxyribose assay and a plasmid relaxation assay, respectively. The light-driven hydroxocobalamin-mediated catalytic formation of hydroxyl radicals was demonstrated using radical scavenging studies of DNA cleavage and via recycling of a hydroxocobalamin-resin conjugate several times without loss of efficacy.  相似文献   

9.
5,6-Dihydro-2'-deoxyuridin-6-yl (1) was independently generated via photolysis of 3. The radical is an analogue of the major reactive species produced from thymidine upon reaction with hydroxyl radical, which is the dominant DNA-damaging agent produced by the indirect effect of gamma-radiolysis. Under aerobic conditions, the peroxyl radical (2) derived from 1 reacts approximately 82% of the time with either the 5'- or 3'-adjacent nucleotide to produce two contiguously damaged nucleotides, known as tandem lesions. The structures and distribution of tandem lesions were investigated using probes that selectively detect abasic sites, ESI-MS/MS, and competition kinetics. In addition to 2-deoxyribonolactone, nonoxidized abasic sites were detected. 18O-Labeling verified that H2O was the source of oxygen in the abasic sites, but that O2 was the source of the oxygen in the 5,6-dihydro-6-hydroxy-2'-deoxyuridine derived from 2. ESI-MS/MS experiments, in conjunction with isotopic labeling, identified several products and provided direct evidence for peroxyl radical addition to the adjacent thymine bases. Kinetic studies revealed that peroxyl radical addition to the 5'-thymine was favored by approximately 4-5-fold over C1'-hydrogen atom abstraction from the respective deoxyribose ring, and that 2-deoxyribonolactone formation accounts for approximately 11% of the total amount of tandem lesions produced. These results suggest that tandem lesions, whose biochemical effects are largely unknown, constitute a major family of DNA damage products produced by the indirect effect of gamma-radiolysis.  相似文献   

10.
We investigated the role of different reactive oxygen species (ROS) in ultraviolet A (UVA)-induced DNA damage in a human keratinocyte cell line, HaCaT. UVA irradiation increased the intracellular levels of hydrogen peroxide (H2O2), detected by a fluorescent probe carboxydichlorodihydrofluorescein, and caused oxidative DNA damage, single strand-breaks and alkali-labile sites, measured by alkaline single cell gel electrophoresis (comet assay). Superoxide anion (O2*-) was a likely substrate for H2O2 production since diethyldithiocarbamate (DDC), a superoxide dismutase blocker, decreased the level of intracellular H2O2. Hydrogen peroxide was shown to play a central role in DNA damage. Increasing the intracellular levels of H2O2 with aminotriazole (AT) (a catalase blocker) and buthionine sulfoximine (BSO) (an inhibitor of glutathione synthesis) potentiated the UVA-induced DNA damage. Exogenous H2O2 was also able to induce DNA damage. Since H2O2 alone is not able to damage DNA directly, we investigated the significance of the H2O2-derived hydroxyl radical (*OH). Addition of FeSO4, that stimulates *OH formation from H2O2 (Fenton reaction) resulted in a twofold increase of DNA-damage. Desferrioxamine, an iron chelator that blocks the Fenton reaction, prevented UVA-induced DNA damage. We also employed a panel of less specific antioxidants and enzyme modulators. Sodium selenite (Na-Se) present in glutathione peroxidase and thioredoxin reductase and addition of glutathione (GSH) prevented DNA-damage. Tocopherol potently prevented UVA-and H2O2-induced DNA damage and reduced intracellular H2O2 -levels. Ascorbic acid reduced H2O2 production, but only partly prevented DNA damage. Singlet oxygen (1O2) did not seem to play an important role in the UVA-induced DNA-damage since the specific 1O2 scavenger sodium azide (NaN3) and the less specific 1O2 scavenger beta-carotene did not markedly prevent either DNA-damage or H2O2 production. In conclusion the conversion of H2O2 to *OH appears to be the most important step in UVA-induced generation of strand breaks and alkali-labile sites and the bulk H2O2 appears to originate from O2*- generated by UVA irradiation.  相似文献   

11.
Bis(peroxo)vanadium(V) complexes are widely investigated as anticancer agents. They exert their antitumor and cyctotoxic effects through inhibition of tyrosine phosphatases and DNA cleavage, respectively. The latter process remains poorly understood. The mechanism of DNA cleavage by NH(4)[(phen)V(O)(eta(2)-O(2))(2)] (phen = 1,10-phenanthroline) was investigated. Kinetic studies on DNA cleavage revealed that the complex is a single-strand nicking agent with no specificity. EPR experiments using 2,2,6,6-tetramethyl-4-piperidone (TMP) and 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) as spin-traps for singlet oxygen and hydroxyl radical, respectively, implicated hydroxyl radical production upon photodecomposition of bis(peroxo)vanadium(V). This was corroborated by benzoate inhibition of DNA strand scission and stoichiometric oxidation of 2-propanol to acetone upon irradiation of bis(peroxo)vanadium(V) phenanthroline. High-resolution polyacrylamide gel analysis of the vanadium cleavage reaction and [Fe(II)EDTA](2)(-)/H(2)O(2) resulted in comigration of "ladder" pattern bands, which superimposed when both reactions were run on the same lane. These findings identify hydroxyl radical produced from the photooxidation of the peroxo ligand on vanadium as the active species in DNA cleavage.  相似文献   

12.
Abstract— Irradiation of bleomycin with light (λ > 320 nm) leads to a decrease in absorbance at 290 nm, which is suppressed by metal ions and by oxygen. Light-induced oxygen consumption is diminished by the enzymes superoxide dismutase and catalase, implying that toxic reduced species of oxygen (O2 and H2O2) are formed during irradiation. Spin-trapping measurements with 5,5-dimethyl-1-pyrroline-1-oxide and 2-methyl-2-nitrosopropane demonstrated that hydroxyl radical and methyl radical adducts also are generated in the system. In addition, direct ESR measurements have shown that methyl radicals are produced during irradiation of bleomycin solutions at low temperatures, together with radicals probably derived from the bithiazole moiety of the bleomycin. The latter are also produced from irradiation of the model compound bithia. Radical production is diminished by complexation of bleomycin with metal ions.  相似文献   

13.
2’-脱氧胞苷-5’-磷酸羟基加合物的分子结构与电子结构   总被引:1,自引:1,他引:0  
使用密度泛函理论(DFT)的B3LYP/DZP++研究了羟基自由基与2’-脱氧胞苷-5’-磷酸(dCMP)的胞嘧啶环加成产物的分子结构与电子结构. 结果表明, dCMP胞嘧啶环中各C原子上的单羟基加合物的相对稳定性顺序为C5>C6>>C4≥C2. 加合物的稳定性、自旋密度、静电势以及dCMP的电子密度、静电势、电荷分布分析表明, dCMP遭遇多个羟基自由基攻击时, 第一个羟基自由基加在dCMP的C5上, 而C6则成为第二个羟基自由基的进攻目标. 反应中一旦形成了C2-位单羟基加合物, 则极有可能在DNA复制过程中引起致命的基因突变, 也可能诱发DNA-DNA以及DNA-蛋白质的链间交联, 引起更复杂的损伤. 相反, C5、C6-位上单羟基加合物的形成对DNA的稳定性不构成直接威胁.  相似文献   

14.
The yields of gamma-radiation-induced single- and double-strand breaks (ssb's and dsb's) as well as base lesions, which are converted into detectable ssb by the base excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg), at 278 K have been measured as a function of the level of hydration of closed-circular plasmid DNA (pUC18) films. The yields of ssb and dsb increase slightly on increasing the level of hydration (Gamma) from vacuum-dried DNA up to DNA containing 15 mol of water per mole of nucleotide. At higher levels of hydration (15 < Gamma < 35), the yields are constant, indicating that H2O*+ or diffusible hydroxyl radicals, if produced in the hydrated layer, do not contribute significantly to the induction of strand breaks. In contrast, the yields of base lesions, recognized by Nth and Fpg, increase with increasing hydration of the DNA over the range studied. The maximum ratios of the yields of base lesions to that of ssb are 1.7:1 and 1.4:1 for Nth- and Fpg-sensitive sites, respectively. The yields of additional dsb, revealed after enzymatic treatment, increase with increasing level of hydration of DNA. The maximum yield of these enzymatically induced dsb is almost the same as that for prompt, radiation-induced dsb's, indicating that certain types of enzymatically revealed, clustered DNA damage, e.g., two or more lesions closely located, one on each DNA strand, are induced in hydrated DNA by radiation. It is proposed that direct energy deposition in the hydration layer of DNA produces H2O*+ and an electron, which react with DNA to produce mainly base lesions but not ssb. The nucleobases are oxidized by H2O*+ in competition with its conversion to hydroxyl radicals, which if formed do not produce ssb's, presumably due to their scavenging by Tris present in the samples. This pathway plays an important role in the induction of base lesions and clustered DNA damage by direct energy deposition in hydrated DNA and is important in understanding the processes that lead to radiation degradation of DNA in cells or biological samples.  相似文献   

15.
This paper presents a new approach to electrochemical sensing of DNA damage, using osmium DNA markers and voltammetric detection at the pyrolytic graphite electrode. The technique is based on enzymatic digestion of DNA with a DNA repair enzyme exonuclease III (exoIII), followed by single-strand (ss) selective DNA modification by a complex of osmium tetroxide with 2,2'-bipyridine. In double-stranded DNA possessing free 3'-ends, the exoIII creates ss regions that can accommodate the electroactive osmium marker. Intensity of the marker signal measured at the pyrolytic graphite electrode responded well to the extent of DNA damage. The technique was successfully applied for the detection of (1) single-strand breaks (ssb) introduced in plasmid DNA by deoxyribonuclease I, and (2) apurinic sites generated in chromosomal calf thymus DNA upon treatment with the alkylating agent dimethyl sulfate. The apurinic sites were converted into the ssb by DNA repair endonuclease activity of the exoIII enzyme. We show that the presented technique is capable of detection of one lesion per approximately 10(5) nucleotides in supercoiled plasmid DNA.  相似文献   

16.
In DNA, guanine bases are the sites from which electrons are most easily removed. As a result of hole migration to this stable location on guanine, guanyl radicals are major intermediates in DNA damage produced by the direct effect of ionizing radiation (ionization of the DNA itself and not through the intermediacy of water radicals). We have modeled this process by employing gamma irradiation in the presence of thiocyanate ions, a method which also produces single electron oxidized guanyl radicals in plasmid DNA in aqueous solution. The stable products formed in DNA from these radicals are detected as strand breaks after incubation with the FPG protein. When a phenolic compound is present in the solution during gamma irradiation, the formation of guanyl radical species is decreased by electron donation from the phenol to the guanyl radical. We have quantified the rate of this reaction for four different phenolic compounds bearing carboxylate substituents as proton acceptors. A comparison of the rates of these reactions with the redox strengths of the phenolic compounds reveals that salicylate reacts ca. 10-fold faster than its structural analogs. This observation is consistent with a reaction mechanism involving a proton coupled electron transfer, because intra-molecular transfer of a proton from the phenolic hydroxyl group to the carboxylate group is possible only in salicylate, and is favored by the strong 6-membered ring intra-molecular hydrogen bond in this compound.  相似文献   

17.
八面体钌(Ⅱ)多吡啶配合物与双螺旋DNA插入结合后具有较强的结合能力,并且含有一个具有氧化一还原活性的中心金属离子.它们对氧化剂相对比较稳定,但对光比较敏感,因此可利用光辐射使之产生单线态氧或羟基自由基等而使DNA裂解.此外,这些配合物具有左手∧-和右手△-两种构型,与同样具有手性的DNA作用时,存在着立体选择性结合.并且在对DNA的断裂反应中也存在一定的立体选择性,可作为不同构型DNA的结构探针.  相似文献   

18.
Rapid and efficient separation of all three types of cyclobutyl pyrimidine dimer (Pyr mean value of Pyr) species induced in cellular DNA by far-ultraviolet (UV) light (chiefly 254 nm) has been achieved by reversed-phase high-performance liquid chromatography using octadecylsilyl stationary phases. The order of elution is: (Ura mean value of Ura) less than (Ura mean value of Thy) less than (Thy mean value of Thy) less than Thy. The determination of Pyr mean value of Pyr species in DNA from UV-irradiated, [3H]thymidine-labelled human skin fibroblasts in tissue culture is demonstrated for far-UV fluences as low as 10 J/m2. The ability to measure specifically individual dimer types allowed demonstration of comparable kinetics of repair for two labelled dimer species (Ura mean value of Thy and Thy mean value of Thy).  相似文献   

19.
In the present study, we evaluated the antioxidant and the scavenging ability of C14, C15 and C16 bacillomycin D-like lipopeptides produced by B38 strain. They all displayed strong reducing power activity, hydroxyl and superoxide anion radicals scavenging activities and inhibition of lipid peroxidation. In addition, they were found to protect plasmid DNA damage from hydroxyl radical oxidation. Data suggested that their antioxidant potency can be attributed to the hydrophobic and aromatic side-chain groups of their amino acids as well as to the aliphatic chain of their beta amino fatty acids. Note that the hydrocarbon chain length did not interfere with the antioxidant power. Overall, such bacillomycin D lipopeptides which exhibit antioxidant and radical scavenging activities may be useful for cosmetic, therapeutic or pharmaceutical purposes in order to delay or prevent oxidative deterioration of manufactured products.  相似文献   

20.
5,6-Dihydro-5-hydroxythymidin-6-yl radical (1), the major reactive intermediate resulting from hydroxyl radical addition to C5 of the pyrimidine, is produced via 350 nm photolysis of a 2,5-dimethoxyphenylsulfide precursor (2). Competition between O(2) and thiol for 1 suggests that the radical reacts relatively slowly with β-mercaptoethanol compared to other alkyl radicals. Overall, aryl sulfide 2 should be an effective precursor for the major hydroxyl radical adduct of thymidine in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号