首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article addresses the synthesis of organically tailored Ni-Al layered double hydroxide(ONi-Al LDH) and its use in the fabrication of exfoliated poly(methyl methacrylate)(PMMA) nanocomposites. The pristine Ni-Al LDH was initially synthesized by co-precipitation method and subsequently modified using sodium dodecyl sulfate to obtain ONi-Al LDH. Nanocomposites of PMMA containing various amounts of modified Ni-Al LDH(3 wt%?7 wt%) were synthesized via solvent blending method to investigate the influence of LDH content on the properties of PMMA matrix. Several characterization methods such as X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), rheological analysis, differential scanning calorimetry(DSC) and thermo gravimetric analysis(TGA), were employed to examine the structural, viscoelastic and thermal properties of PMMA/OLDH nanocomposites. The results of XRD and TEM examination confirm the formation of partially exfoliated PMMA/OLDH nanocomposites. The FTIR results elucidate that the characteristic bands for both pure PMMA and modified LDH are present in the spectra of PMMA/OLDH nanocomposites. Rheological analyses were carried out to examine the adhesion between polymer matrix and fillers present in the nanocomposite sample. The TGA data indicate that the PMMA nanocomposites exhibit higher thermal stability when compared to pure PMMA. The thermal decomposition temperature of PMMA/OLDH nanocomposites increases by 28 K compared to that of pure PMMA at 15% weight loss as a point of reference. In comparison with pure PMMA, the PMMA nanocomposite containing 7 wt% LDH demonstrates improved glass transition temperature(Tg) of around 3 K. The activation energy(Ea), reaction orders(n) and reaction mechanism of thermal degradation of PMMA/OLDH nanocomposites were evaluated using different kinetic models. Water uptake capacity of the PMMA/OLDH nanocomposites is less than that of the pure PMMA.  相似文献   

2.
Polyaniline-co-phenylenediamine (PAn/PDA) nanocomposite has been prepared in the aqueous medium using sodium dodecyl benzene sulfonate (DBSNa) and hydroxypropylcellulose (HPC) as a surfactant. The tests used in this research to characterize the products were SEM, TEM, FTIR, UV–Visible and TGA for morphology, particle size, chemical structure and stability. The results confirm that the spherical nanocomposites (40–90 nm) were formed with high thermal stability. It is shown in the results that the physicochemical properties of poly(alkyl substituted anilines) are depended on the substituent groups that are bonded to N-position. The prepared nanocomposites were then tested for the antibacterial properties against three pathogenic strains. The antibacterial properties of nanocomposites were investigated by disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentrations (MBC), and bactericidal kinetic methods. The disk diffusion result indicated that the diameter of the inhibition zones of PAn/PDA–HPC nanocomposite was 9, 11, and 10 mm against E. coli, P. aeruginosa, and S. aureus respectively. It was found that the value of MIC of PAn/PDA–HPC nanocomposite against E. coli, P. aeruginosa and S. aureus were 2.5, 1.25 and 2.5 mg/mL respectively. The evaluation results revealed the PAn/PDA–HPC nanocomposite exhibited excellent inhibitory activity against both gram-negative and gram-positive bacteria.  相似文献   

3.
This research paper comprises of the synthesis of polypyrrole (PPy)-Fe2O3 nanocomposites by employing the in situ chemical oxidative polymerization method. The concentration of the filler material was adjusted between 10–50 wt % of PPy. The synthesized nanocomposites were characterized by using X-ray diffraction (XRD). Magnetic analysis and DC electrical conductivity of the samples were carried out using vibrating sample magnetometer (VSM) and two probe DC conductivity method, point towards magnetically active and electrically conductive samples. The magnetic parameters under applied magnetic field demonstrated that the values of coercivity (H c ), saturation magnetization (M s ) and remanence (M r ) can be tailored by carefully controlling the amount of dopant material into the nanocomposites indicating their suitability for controllable switching devices and microwave absorption applications. The DC electrical conductivity showed an increase up to 20 wt % of filler material and thereafter a decrease in the conductivity of nanocomposites with increase in filler content is observed. Thermogravimetric analysis (TGA) showed an increase in thermal stability with an increase in ferrite content in nanocomposites.  相似文献   

4.
This study is to investigate the effect of nitrile butadiene rubber (NBR as impact modifier) together with Al2O3/YSZ (toughening) as filler loading in PMMA denture base on the thermal and mechanical properties. PMMA matrix without fillers was mixed between PMMA powder and 0.5 mass% of BPO, and it is used as the control group. The liquid components consist of 90% of methyl methacrylate (MMA) and 10% as the cross-linking agent of ethylene glycol dimethacrylate. The denture base composites were fabricated by incorporating PMMA powder and BPO and fixed at 7.5 mass% NBR particles and filler loading (1, 3, 5, 7 and 10 mass%) of Al2O3/YSZ mixture filler by (1:1 ratio) as the powder components. The ceramic fillers were treated with silane (γ-MPS) and the powder/liquid ratio (P/L) according to dental laboratory practice. The TGA data obtained show that the PMMA composites have better thermal stability compared to unreinforced PMMA, while DSC curves show slightly similar Tg values. DSC results also indicated the presence of unreacted monomer content for both reinforced and unreinforced PMMA composites. The fracture toughness, Vickers hardness and flexural modulus values were statistically increased compared to the unreinforced PMMA matrix (P?<?0.05).  相似文献   

5.
The adsorption properties of nanocomposites based on γ-Al2O3 modified with CeOx, Au/CeOx, and Pd/CeOx nanoparticles with contents of deposited metals ranging from 0.07 to 1.71 wt % are investigated by means of dynamic sorption method. n-Alkanes (C6–C8), acetonitrile, diethyl ether, tetrahydrofuran, and dioxane are used as test adsorbates. Adsorption isotherms are measured, and the isosteric heats of adsorption of a number of test adsorbates are calculated. Electron-donor and electron-acceptor characteristics of the surfaces of γ-Al2O3-based nanocomposites are estimated. It is shown that Au(0.1%)/CeOx(0.07%)/γ-Al2O3 nanocomposite, which has the lowest content of nanoparticles of the deposited metals, has the highest adsorption activity.  相似文献   

6.
The synergistic effects of layered double hydroxide (LDH) with hyperfine magnesium hydroxide (HFMH) in halogen-free flame retardant ethylene-vinyl acetate (EVA)/HFMH/LDH nanocomposites have been studied by X-ray diffraction (XRD), transmission electron spectroscopy (TEM), thermogravimetric analysis (TGA), limiting oxygen index (LOI), mechanical properties' tests, and dynamic mechanical thermal analysis (DMTA). The XRD results show that the exfoliated EVA/HFMH/LDH can be obtained by controlling the LDH loading. The TEM images give the evidence that the organic-modified LDH (OM-LDH) can act as a disperser and help HFMH particles to disperse homogeneously in the EVA matrix. The TGA data demonstrate that the addition of LDH can raise 5-18 °C thermal degradation temperatures of EVA/HFMH/LDH nanocomposite samples with 5-15 phr OM-LDH compared with that of the control EVA/HFMH sample when 50% weight loss is selected as a point of comparison. The LOI and mechanical tests show that the LDH can act as flame retardant synergist and compatilizer to apparently increase the LOI and elongation at break values of EVA/HFMH/LDH nanocomposites. The DMTA data verify that the Tg value (−10 °C) of the EVA/HFMH/LDH nanocomposite sample with 15 phr LDH is much lower than that (Tg = −2 °C) of the control EVA/HFMH sample without LDH and approximates to the Tg value (−12 °C) of pure EVA, which indicates that the nanocomposites with LDH have more flexibility than that of the EVA/HFMH composites.  相似文献   

7.
1,10-Phenanthrolinetris(4-methoxybenzoate)dysprosium, Dy(p-MOBA)3Phen (where p-MOBA = p-methoxybenzoate and Phen = 1,10-phenanthroline), (I) has been synthesized. The complex was characterized by various techniques including elemental analysis, UV, IR, XRD, molar conductance, and TG-DTG. The crystals consist of binuclear molecules and monoclinic, space group P2 1/n: a = 14.143(6) Å, b = 17.550(7) Å, c = 14.493(6) Å, β = 117.357(4)°, Z = 2, ρ c = 1.655 g cm?3, F(000) = 1588; R 1 = 0.0176, wR 2 = 0.0455. In the complex, each Dy3+ ion is nine-coordinate to one 1,10-phenanthroline molecule, one bidentate chelating carboxylate group, and four bridging carboxylate groups in which the carboxylate groups are bonded to the Dy3+ ions in three modes: bridging bidentate, bridging tridentate, and chelating bidentate. The thermal decomposition mechanism of I has been determined on the basis of thermal analysis. In addition, the lifetime equation at a weight-loss of 10% was deduced as lnτ = ?28.8361 + 19478.37/T by isothermal thermogravimetric analysis.  相似文献   

8.
In this study, we demonstrate a novel method for fabricating polythiophene patterns, i.e., cylindrical holes and cylinders, through blending of a thermally curable polythiophene carrying with tertiary ester groups (PT-tert-ESTER) and poly(methyl methacrylate) (PMMA), followed by thermal conversion of the PT-tert-ESTER to an insoluble polythiophene via low-temperature cleavage of the tertiary ester groups and removal of the PMMA component via ultraviolet degradation. We show that the surface polarity of substrates, the mass ratio of PT-tert-ESTER to PMMA in the blend solutions as well as the concentration of the blend solutions strongly influence the formation of the polythiophene patterns. Cylindrical holes are more readily formed on less polar substrates when a PT-tert-ESTER dominated blend solution is used, while cylinders are more readily formed on more polar substrates when a PMMA dominated blend solution is used. Moreover, the diameters of both the cylindrical holes and the cylinders decrease as the PT-tert-ESTER concentration is increased in the respective ranges of the PT-tert-ESTER/PMMA ratios where the patterns are formed. Grazing incident X-ray diffraction data have indicated that the patterning of the PT-tert-ESTER component in the blend films improves the crystallinity of PT-tert-ESTER as well as the molecular packing of the insoluble polythiophene in the resultant patterned polythiophene films.  相似文献   

9.
In this work, an ecofriendly and economic strategy for synthesize of CuO and Co3O4 were developed using extracted Sesbania sesban solution (ESS) as a reducing and stabilizing agent, and bioreactor. These novel nano metal oxides (NMOs) were characterized by high-resolution-transmission electron microscopy (TEM), EDAX thermo gravimetric analysis and X-ray diffraction (XRD). Morphology and size of them were investigated by TEM and the average sizes of for spherical CuO and Co3O4 nanoparticles are 20–40 and 15–30 nm, respectively. The XRD and EDAX confirmed the high purity for NMOs. The thermal behaviors of the NMOs exhibited good crystallographic stability within the investigated temperature range. The antioxidant and antibacterial activities of NMOs were investigated and compared to manganese(III) meso-tetraphenylporphyrin complex/Ag nanocomposite (Ag/P nanocomposite) synthesizing by ESS. The results obtained from this work showed that copper(II) oxide, cobalt oxide nanoparticles, and Ag/P nanocomposite have DPPH scavenging activity. On the other hand, NMOs have no antibacterial activity against Gram-negative bacterial strains. Cobalt oxide nanoparticles have antibacterial activity against Staphylococcus aureus, while Ag/P nanocomposite showed the antibacterial activities against both Gram-negative and Gram-positive bacterial strains.  相似文献   

10.
Nickel(II) dicarboxylates of unsaturated carboxylic acids (maleic (MalA), itaconic (ItA), acetylenedicarboxylic (ADCA), allylmalonic (AlMalA), glutaconic (GlutA), cis,cis-muconic (MucA) acids) were synthesized and characterized by thermal analysis and IR spectroscopy. The synthesized dicarboxylates were subjected to thermolysis, and the obtained nanocomposites were studied by transmission and scanning electron microscopy and X-ray diffraction. The synthesized metallopolymer nanocomposites were NiO and metallic Ni nanoparticles distributed over a stabilizing matrix. The formation enthalpy of dicarboxylates (ΔНr°) was calculated by the PM3 semi-empirical quantum-chemical method. The nanoparticle size was determined, and a relationship between the average nanoparticle diameter (davg) and ΔНr° was established. The microstructure and magnetic characteristics of the obtained nanocomposites, namely, the maximum and residual magnetization and the coercive force, were studied.  相似文献   

11.
The crystal structures of compounds from the series [M(NH3)5Cl](NO3)2, (M = Ir, Rh, Ru) were described. The compounds crystallized in the tetragonal crystal system, space group I4, Z = 2. Crystal data for [Ir(NH3)5Cl](NO3)2 (I): a = 7.6061(1) Å, b = 7.6061(1) Å, c = 10.4039(2) Å, V = 601.894(16) Å3, ρcalc = 2.410 g/cm3, R = 0.0087; [Rh(NH3)5Cl](NO3)2 (II): a = 7.5858(5) Å, b = 7.5858(5) Å, c = 10.41357(7) Å, V = 599.24(7) Å3, ρcalc = 1.926 g/cm3, R = 0.0255; [Ru(NH3)5Cl](NO3)2 (III): a = 7.5811(6) Å, b = 7.5811(6) Å, c = 10.5352(14) Å, V = 605.49(11) Å3, ρcalc = 1.896 g/cm3, R = 0.0266. The compounds were defined by IR spectroscopy and XRPA and thermal analyses.  相似文献   

12.
Gelatin/sodium montmorillonite (Na+MMT) hybrid nanocomposite films were prepared by a new photocrosslinking method using 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone (Irgacure 2959) as a photoactive radical initiator and N,N′-Methylenebisacrylamide (MBA) as a crosslinking agent. The prepared samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry, stress–strain measurements and UV–Vis spectrophotometry. XRD patterns showed the formation of exfoliation structure resulting in considerable improves in mechanical properties of the nanocomposite. Retaining of transparency also suggested that Na+MMT nanosheets were uniformly distributed in the gelatin matrix. The tensile strength and Elastic’s modulus of nanocomposites were also improved notably by enhancing amount of Na+MMT. Furthermore, gelatin/Na+MMT nanocomposites showed a second T g at a higher temperature in presence of Na+MMT.  相似文献   

13.
Determination of the characteristics of native starches is crucial in order to select their best application in various industrial fields. Thus, two different types of non-traditional native starches from the Dioscoreaceas species (Dioscorea sp. and Dioscorea piperifolia Humb. var. Wild) were studied regarding their thermal, structural and rheological properties. The results were contrasted with traditional commercial starch sources (potato, cassava and corn). From the thermogravimetric results (TG/DTG), D. piperifolia starch obtained the highest thermal stability of the samples, except for potato starch. Furthermore, using differential scanning calorimetry and viscoamylograph profiles (RVA), it was found that the Dioscoreaceas starches presented a higher onset (T o) temperature and susceptibility to retrogradation. They also showed lower values in relation to relative crystallinity, which was calculated from their X-ray patterns and tendency to white (L*) colour. The shapes of the Discoreaceas starch granules were determined using electron microscopy; it was found that as the potato starch the Dioscoreaceas starches showed a wide range of particle size.  相似文献   

14.
Trends in thermal stability of aromatic macroheterocycles based of pheophorbide a and chlorin e 6 containing hydrophilic groups have been revealed by means of thermogravimetric analysis at 298–1223 K under inert atmosphere. Methylpheophorbide a and 13(1)-N-methylamide of chlorin e 6 are the most stable, the decomposition onset temperature being t o 351 and 333°С. Their functional substitution leads t o the reduction in thermal stability. Depending on the macrocycle structure the decrease in t o can reach 20–200°С.  相似文献   

15.
The KPb2Cl5 and KPb2Br5 crystals are monoclinic (P21/c) with a microtwinned structure. X-ray analysis of chloride resulted in the parameters a = 8.854(2) Å, b = 7.927(2) Å, c = 12.485(3) Å; β = 90.05(3)°, dcalc = 4.78(1) g/cm3 (STOE STADI4, MoKα, 2θmax = 80°), R1 = 0.0702 for 4094 F ≥ 4 σ(F) reflections. For bromide, a = 9.256(2) Å, b = 8.365(2) Å, c = 13.025(3) Å; β = 90.00(3)°, dcalc = 5.62(1) g/cm3 (Bruker P4, MoKα, 2θmax = 70°), R1 = 0.0692 for 3076 F ≥ 4 (F) reflections.  相似文献   

16.
The double complex salt [Pd(NH3)4][AuCl4]2 was synthesized and studied by X-ray diffraction: a = 7.5234(6) Å, b = 7.7909(5) Å, c = 8.0247(6) Å, α = 108.483(2)°, β = 106.497(2)°, γ = 99.972(3)°, V = 409.43(5) Å3, space group P \(\overline 1 \), Z = 1, ρcalod = 3.456 g/cm3, R = 0.0267. The compound was characterized by powder X-ray diffraction, thermal analysis, and IR and Raman spectroscopy. The metal products of thermolysis of the complex were studied by powder X-ray diffraction.  相似文献   

17.
Calculations are made using the equations Δr G = Δr H ? TΔr S and Δr X = Δr H ? Δr Q where Δr X represents the free energy change when the exchange of absorbed thermal energy with the environment is represented by Δr Q. The symbol Q has traditionally represented absorbed heat. However, here it is used specifically to represent the enthalpy listed in tabulations of thermodynamic properties as (H T  ? H 0) at T = 298.15 K, the reason being that for a given substance TS equals 2.0 Q for solid substances, with the difference being greater for liquids, and especially gases. Since Δr H can be measured, and is tangibly the same no matter what thermodynamics are used to describe a reaction equation, a change in the absorbed heat of a biochemical growth process system as represented by either Δr Q or TΔr S would be expected to result in a different calculated value for the free energy change. Calculations of changes in thermodynamic properties are made which accompany anabolism; the formation of anabolic, organic by-products; catabolism; metabolism; and their respective non-conservative reactions; for the growth of Saccharomyces cerevisiae using four growth process systems. The result is that there is only about a 1% difference in the average quantity of free energy conserved during growth using either Eq. 1 or 2. This is because although values of TΔr S and Δr Q can be markedly different when compared to one another, these differences are small when compared to the value for Δr G or Δr X.  相似文献   

18.
The structures of three novel octahedral rhenium cluster compounds [Re6S8(CN)2(py)4]·H2O (1), [Re6S8(CN)2(4-Mepy)4] (2), [Re6S8(CN)2(4-Mepy)4]·4-Mepy (3) (py = pyridine, 4-Mepy = 4-methylpyridine) are determined by X-ray crystallography. Crystal data are: C2/m space group, a = 14.813(1) Å, b = 14.772(1) Å, c = 9.2122(6) Å, β = 119.085(2)°, V = 1761.7(2) Å3, d x = 3.318 g/cm3, R = 0.0585 (1); I41/amd space group, a = 16.0018(3) Å, c = 14.7186(5) Å, V = 3768.81(16) Å3, d x = 3.169 g/cm3, R = 0.0489 (2); P21/c space group, a = 9.0452(4) Å, b = 15.8065(7) Å, c = 15.2951(6) Å, β = 103.700(2)°, V = 2124.57(16) Å3, d x = 2.957 g/cm3, R = 0.0245 (3). Molecular cluster complexes interact via π-π stacking affording 3D frameworks in 1 and 2 and chains in 3.  相似文献   

19.
Perovskite-like nonstoichiometric oxide Sm x Cu3V4O12 (space group Im \(\bar 3\), Z = 2, a = 7.276?7.314 Å) with cationic vacancies and a homogeneity region was prepared barothermally (p = 6.0?9.0 GPa, T = 700?1100°C) for the first time. Structural and isotropic thermal parameters, as well as bond lengths and bond angles, were determined. The compound has metal-type conductivity and paramagnetic properties.  相似文献   

20.
The Cu3p and Cu2p resonance photoelectron spectra of the valence bands and core levels as well as Ti and CuL 2,3 absorption spectra for monocrystals 1T-Cu x TiSe2 were studied. The valence spectra obtained at Cu3p and Cu2p resonance drastically differ from each other. For Cu 3p-3d resonance, there are several bands corresponding to different channels of excited state decay. Spectra of the valence bands at Cu 2p-3d resonance are virtually identical to the spectra of pure TiSe2. As follows from the absorption spectra, titanium atoms have the oxidation state 4+, whereas copper atoms are close to the free ion state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号