首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Controlled adsorptive accumulation of orotic acid (vitamin B13) at the hanging mercury drop electrode (HMDE) provides the basis for the direct stripping measurement of that compound in nanomolar concentration. Differential pulse voltammetry applied to a sample at pH 11.20 fixed in NaOH has a detection limit of 5.0 × 10–10 mol/l of orotic acid (with 3 min of preconcentration).The cathodic stripping response is evaluated with respect to experimental parameters such as preconcentration time, preconcentration potential, bulk concentration and other parameters. Cathodic stripping voltammetry can be proposed for the determination of the orotic acid, the reproducibility of this method was studied.
Cathodic-Stripping Voltammetrie von Orotsäure (Vitamin B13) an der hängenden Quecksilbertropfelektrode
  相似文献   

2.
A new method to determine manganese by voltammetry after controlled adsorptive accumulation of the manganese–ammonium–acetate at the glassy carbon electrode is described. The manganese complex gives well-defined voltammetric peak at pH 4.0 and 9.0. Cathodic stripping voltammetry combined with the Osteryoung square-wave mode at the glassy carbon electrode gave rise to both sensitivity and selectivity of the determination of manganese in some industrial samples. The method offers enhanced sensitivity in comparison to analogous measurements presented in the literature. The detection limit with 5 min accumulation is 0.022 μg l−1 . Simultaneous determination of manganese in presence of Cu(II), Pb(II) and Zn(II) could be easily done using anodic stripping voltammetry at pH 4.0. Calibration plots are constructed and the method was checked with the aid of standard industrial reference samples giving values of standard deviations between 1.2 and 1.8.  相似文献   

3.
The adsorption behavior and differential pulse cathodic adsorptive stripping voltammetry of the pesticide Chlorpyrifos (CP) were investigated at the hanging mercury drop electrode (HMDE). The pesticide was accumulated at the HMDE and a well-defined stripping peak was obtained at –1.2 V vs Ag/AgCl electrode at pH 7.50. A voltammetric procedure was developed for the trace determination of Chlorpyrifos using differential pulse cathodic adsorptive stripping voltammetry (DP-CASV). The optimum working conditions for the determination of the compound were established. The peak current was linear over the concentration range 9.90 × 10–8– 5.96 × 10–7 mol/L of Chlorpyrifos. The influence of diverse ions and some other pesticides was investigated. The analysis of Chlorpyrifos in commercial formulations and treated waste water was carried out satisfactorily Received: 10 July 1997 / Revised: 1 April 1998 / Accepted: 6 April 1998  相似文献   

4.
Ertas FN  Fogg AG  Moreira JC  Barek J 《Talanta》1993,40(10):1481-1488
The behaviour of the copper complexes of glycyl-L-histidyl-glycine (GHG) was investigated using cyclic voltammetry and differential pulse voltammetry after their adsorptive accumulation on the surface of a hanging mercury drop electrode (HMDE). The nature of the observed cathodic and anodic peaks was established and optimum conditions were found for the differential pulse cathodic stripping voltammetric detemination of GHG at the 1 x 10(-8)M concentration level using adsorptive accumulation at -0.20 V vs. Ag/AgCl reference electrode and the cathodic stripping peak around -0.4 V (pH 8.3). This peak corresponds to the reduction of the Cu(I)-GHG complex formed at the HMDE surface as an intermediate in the reduction of Cu(II)-GHG to Cu(O)amalgam.  相似文献   

5.
A selective and sensitive method for simultaneous determination of lead, zinc and copper by adsorptive differential pulse cathodic stripping voltammetry is presented. The method is based on adsorptive accumulation of the complexes of Pb(II), Zn(II), and Cu(II) ions with dopamine onto hanging mercury drop electrode (HMDE), followed by reduction of adsorbed species by differential pulse cathodic stripping voltammetry. The effect of experimental parameters such as pH, dopamine concentration, accumulation time and potential and scan rate were examined. Under the optimized conditions, linear calibration curves were established for the concentration of Pb, Zn, and Cu in the ranges of 5–150, 5–250, and 1–150 ng/mL, respectively. Detection limits of 0.06, 0.25, and 0.04 ng/mL for Pb, Zn, and Cu were obtained. An application of the proposed method is reported for the determination of these elements in some real samples such as natural waters and alloys.  相似文献   

6.
The surface activity of xanthine (Xan) and xanthosine (Xano) at a hanging mercury drop electrode (HMDE) was studied using out-of-phase ac and cyclic dc voltammetry. The results show that Xan and Xano were strongly adsorbed and chemically interacted with the charged mercury surface, which is the prerequisite step for applying the cathodic adsorptive stripping voltammetric determination of such biologically important compounds. Differential pulse cathodic adsorptive stripping voltammetry (DPCASV) and square-wave cathodic adsorptive stripping voltammetry (SWCASV) were applied for the ultratrace determination of Xan and Xano compounds. Moreover, a rapid and sensitive controlled adsorptive accumulation of Cu(II) complexes of both compounds provided the basis of a direct stripping voltammetric determination of such compounds to submicromolar and nanomolar levels. Operational and solution conditions for the quantitative ultratrace determination of Xan and Xano were optimized in absence and presence of Cu(II). The calibration curve data were subjected to least-squares refinements. The effects of several types of inorganic and organic interfering species on the determination of Xan or Xano were considered.  相似文献   

7.
The adsorption behavior and differential pulse cathodic adsorptive stripping voltammetry of the pesticide Chlorpyrifos (CP) were investigated at the hanging mercury drop electrode (HMDE). The pesticide was accumulated at the HMDE and a well-defined stripping peak was obtained at –1.2 V vs Ag/AgCl electrode at pH 7.50. A voltammetric procedure was developed for the trace determination of Chlorpyrifos using differential pulse cathodic adsorptive stripping voltammetry (DP-CASV). The optimum working conditions for the determination of the compound were established. The peak current was linear over the concentration range 9.90 × 10–8– 5.96 × 10–7 mol/L of Chlorpyrifos. The influence of diverse ions and some other pesticides was investigated. The analysis of Chlorpyrifos in commercial formulations and treated waste water was carried out satisfactorily  相似文献   

8.
A new method is proposed for the determination of bismuth and copper in the presence of each other based on adsorptive stripping voltammetry of complexes of Bi(III)-chromazorul-S and Cu(II)-chromazorul-S at a hanging mercury drop electrode (HMDE). Copper is an interfering element for the determination of Bi(III) because, the voltammograms of Bi(III) and Cu(II) overlapped with each other. Continuous wavelet transform (CWT) was applied to separate the voltammograms. In this regards, wavelet filter, resolution of the peaks and the fitness were optimized to obtain minimum detection limit for the elements. Through continuous wavelet transform Symlet4 (Sym4) wavelet filter at dilation 6, quantitative and qualitative analysis the mixture solutions of bismuth and copper was performed. It was also realized that copper imposes a matrix effect on the determination of Bi(III) and the standard addition method was able to cope with this effect. Bismuth does not have matrix effect on copper determination, therefore, the calibration curve using wavelet coefficients of CWT was used for determination of Cu(II) in the presence of Bi(III). The detection limits were 0.10 and 0.05 ng ml−1 for bismuth and copper, respectively. The linear dynamic range of 0.1-30.0 and 0.1-32.0 ng ml−1 were obtained for determination of bismuth in the presence of 24.0 ng ml−1 of copper and copper in the presence of 24.0 ng ml−1 of bismuth, respectively. The method was used for determination of these two cations in water and human hair samples. The results indicate the ability of method for the determination of these two elements in real samples.  相似文献   

9.
The anodic stripping behaviour of copper in the presence of compounds with a mercapto group, such as cysteine, was investigated. In the presence of cysteine, a copper stripping wave at ?0.12 V vs. SCE decreased, and instead a new sharp wave was observed at more positive potential. Its peak height increased with increasing concentration of cysteine, and at 1 × 10?5M cysteine it became about seven times as large as that observed in the absence of cysteine. Then the method using this enhanced wave was studied for the determination of trace cupric ion. The results were that the relative standard deviation for five repetitive determinations was about 4% at 10?8M Cu(II) and the detection limit was 6 × 10?10M Cu(II). From the investigation by means of cyclic voltammetry, it was found that this enhanced wave was due to the transformation from a cupric—cysteinate complex to a mercuric—cysteinate complex.  相似文献   

10.
The influence of cetyltrimethylammonium bromide (CTAB) on the simultaneous determination of tin(IV) and lead(II) by anodic stripping voltammetry at a hanging mercury drop electrode (HMDE) in a 0.1 M hydrochloric acid—0.1 M oxalic acid medium was studied using d.c. and a.c. stripping. In the presence of CTAB, tin and lead show voltammetric peaks separated by 100 mV, the sensitivity depending on the concentration of CTAB. The best conditions for the simultaneous determination of both elements (2 × 10-3 M) were found. A method is proposed for the determination of tin in the presence of lead and three procedures are given for the determination of lead in the presence of tin.  相似文献   

11.
The behavior of Cd(II), Pb(II), Cu(II), and I in the aqueous solutions of sodium chloride is studied by stripping voltammetry. A new version of using an indicator electrode from carbon glass ceramics modified with mercury for the consecutive stripping determination of Cd(II), Pb(II), Cu(II), and iodide is proposed. The mercury-graphite electrode was formed in the solution of a supporting electrolyte based on NH4Cl, HCl, 0.05 M potassium tetraoxalate (KH3C4O3 · 2H2O), and 5 × 10−5 M mercury(II). At first, Cd(II), Pb(II), Cu(II), and then iodide were determined by anodic-cathodic stripping voltammetry after adding a sample solution (table salt, 10–100 mg/mL NaCl).  相似文献   

12.
A reliable and sensitive procedure for the simultaneous determination of trace levels of copper and molybdenum is proposed. The complexing of copper(II) and molybdenum(VI) with pyrogallol red (PGR) is analyzed by cathodic stripping differential pulse voltammetry based on the adsorption collection of the complexes onto a hanging mercury drop electrode (HMDE). The effect of chemical and instrumental parameters on the sensitivity and selectivity were studied. Copper and molybdenum peaks potential were observed at about +0.13 and −0.22 V versus Ag/AgCl electrode, respectively. A standard addition method was utilized for the analysis of voltammogram data, under the optimum conditions and with accumulation time of 90 s. The measured peak current at about +0.14 and −0.22 V is proportional to the concentration of Cu(II) and Mo(VI) over the range of 2-70 and 0.8-80 ng ml−1, respectively. The limit of detection are 0.3 and 0.1 ng ml−1 for Cu(II) and Mo(VI), respectively. The capability of the method for the analysis of real samples was evaluated by determination of copper and molybdenum in river water, tap water and alloy. Atomic absorption spectrometry was applied as a reference method for determination of copper and molybdenum in water samples.  相似文献   

13.
Cathodic adsorptive stripping voltammetry (CASV) was applied for the determination of rutin in pharmaceuticals, human urine, and blood serum. An electrochemical stripping procedure for trace measurements of rutin was developed based on the adsorption of the Cu2+-rutin complex on a hanging mercury drop electrode and applied to the quantification of the drug. Cyclic voltammetry was used to characterize the interfacial and redox behavior of the adsorbed Cu2+-rutin complex. Experimental and instrumental parameters for quantitative determination were optimized, and a detection limit of 4.9 × 10−9 mol · L−1 in presence of Cu2+-ions for quantification of rutin under optimum conditions was derived. The sharp peak of the adsorbed Cu2+-rutin complex associated with an effective interfacial accumulation of this compound facilitates the determination of rutin in biological fluids with good recoveries. The degree of interference from potentially present metal ions and organic compounds on the CASV signal for Cu2+-rutin complex was evaluated.  相似文献   

14.
Determination of copper (Cu), zinc (Zn) and manganese (Mn) micronutrients in soil samples have been studied for an efficient fertiliser application. Plant-available micronutrients of soils were extracted with DTPA extraction procedure, then differential pulse stripping voltammetry (DPSV) and square wave stripping voltammetry (SWSV) methods were performed with inexpensive and disposable pencil graphite electrode for determination of Cu(II), Zn(II) and Mn(II). Parameters such as deposition potential, deposition time, pH and concentration of the supporting electrolyte were optimised for these ions. Under optimised conditions, the limits of detection were found as 0.01 mg L?1 for Cu(II) and 0.02 mg L?1 for Zn(II) and 0.25 mg L?1 for Mn(II). Relative standard deviation (%RSD) was 6.80, 8.86 and 3.29 for Cu(II), Zn(II) and Mn(II), respectively. The experimental study was conducted using a flame atomic absorption spectroscopy. The described stripping voltammetry methods were successfully applied for the determination of Mn(II), Cu(II) and Zn(II) in soil samples.  相似文献   

15.
A procedure was proposed for the determination of selenium(IV) by stripping voltammetry on a mercury-film electrode at an electrolysis potential of +0.4 V versus the saturated silver–silver chloride reference electrode in a 1 M H2SO4 solution. The current of the cathodic peak is a linear function of the selenium(IV) concentration in the range from 5 × 10–3 to 3 × 10–1 mg/L (6.3 × 10–8 to 3.8 × 10–6 M) at a time of electrolysis of 30 s (t el). The detection limit for selenium is 1 × 10–4 mg/L (1.3 × 10–9 M) at t el = 300 s. It was shown that selenium(IV) can be determined in the presence of 10 mg/L Zn(II), 1 mg/L Cd(II), 0.5 mg/L Pb(II), and 0.2 mg/L Cu(II). A procedure for the determination of selenium in natural, mineral, and potable water was proposed.  相似文献   

16.
Khodari M  Ghandour M  Taha AM 《Talanta》1997,44(3):305-310
Cathodic stripping voltammetry was used to determine 5-fluorouracil (5-FU) in the presence of traces of Cu(II). It was found that the addition of 5 x 10(-9) mol dm(-3) Cu(II) to the measurement cell greatly enhanced the peak current of the adsorbed molecule. Different parameters were tested to optimize the conditions for the determination of 5-FU. The adsorbed form is reduced irreversibly. It was observed that by controlling the deposition potential, the technique could be directed to the determination of Cu(II) or the drug. The linear range was from 5 x 10(-9) to 6 x 10(-8) mol dm(-3) for 5-FU and from 6 x 10(-9) to 5 x 10(-8) mol dm(-3) for Cu(II). Detection limits of 4.6 x 10(-10) and 5 x 10(-10) mol dm(-3) were obtained for 5-FU and Cu(II), respectively. The method was applied to urine and molecules or ions which may interfere were studied.  相似文献   

17.
Simultaneous determination of Al(III) and Fe(III) in posthemodialysis fluids was investigated by the Adsorptive stripping voltammetry of solochrome violet metal complexes. The adsorption of the complexes on the mercury electrode (HMDE) was investigated by out of phase altenating current voltammetry in presence of the main matrix interfering species. Sample digestion by UV irradiation was investigated to overcome the matrix interference. The proposed method was valid for real posthemodialysis samples containing or not Desferrioxamine B. Detection limits of 1.4 and 1.8 μg L?1 were calculated for Al(III) and Fe(III), respectively. Recoveries ranging from 88.1 to 106.3% were obtained from spiking experiments.  相似文献   

18.
The stripping voltammetry at HMDE is proposed for Cd and Pb (undesirable ingredients) determination in the natural brine (CCl >43 g L−1). Samples with so high salinity have to be significantly diluted. For ICP MS, a 105–6 times dilution is required, which disqualifies this method. The proposed procedure allows to determine Cd (0.001 μg L−1) and Pb (0.005 μg L−1) after only 100 times dilution. The thermal chloride stripping or isolation by Chelex 100 increase the quality of obtained data. The recovery study was performed. The LOQs are below recommendations related to the use of brines in balneology.  相似文献   

19.
Summary The cathodic stripping voltammetry of copper(II) was investigated with a method, based on the adsorptive accumulation of the Cu(II)-salicylideneamino-2-thiophenol (SATP) complex on a hanging mercury drop electrode. The copper(II)-SATP complex could be accumulated on the electrode at –0.20 V in 0.01 mol/l nitric acid. The reduction peak of the copper complex was observed by scanning the potential in a negative direction in the differential pulse mode. The calibration curve for copper was linear over the range 5×10–9–1×10–7 mol/l. This method was applied to determine copper(II) in GSJ (Geological Survey of Japan) standard rock reference materials.  相似文献   

20.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号