首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optically active ligands of type Ph2PNHR (R = (R)-CHCH3Ph, (a); (R)-CHCH3Cy, (b); (R)-CHCH3Naph, (c)) and PhP(NHR)2 (R = (R)-CHCH3Ph, (d); (R)-CHCH3Cy, (e)) with a stereogenic carbon atom in the R substituent were synthesized. Reaction with [PdCl2(COD)2] produced [PdCl2P2] (1) (P = PhP(NHCHCH3Ph)2), whose molecular structure determined by X-ray diffraction showed cis disposition for the ligands. All nitrogen atoms of amino groups adopted S configuration. The new ligands reacted with allylic dimeric palladium compound [Pd(η3-2-methylallyl)Cl]2 to gave neutral aminophosphine complexes [Pd(η3-2-methylallyl)ClP] (2a-2e) or cationic aminophosphine complexes [Pd(η3-2-methylallyl)P2]BF4 (3a-3e) in the presence of the stoichiometric amount of AgBF4. Cationic complexes [Pd(η43-2-methylallyl)(NCCH3)P]BF4 (4a-4e) were prepared in solution to be used as precursors in the catalytic hydrovinylation of styrene. 31P NMR spectroscopy showed the existence of an equilibrium between the expected cationic mixed complexes 4, the symmetrical cationic complexes [Pd(η3-2-methylallyl)P2]BF4 (3) and [Pd(η3-2-methylallyl)(NCCH3)2]BF4 (5) coming from the symmetrization reaction. The extension of the process was studied with the aminophosphines (a-e) as well as with nonchiral monodentate phosphines (PCy3 (f), PBn3 (g), PPh3 (h), PMe2Ph (i)) showing a good match between the extension of the symmetrization and the size of the phosphine ligand. We studied the influence of such equilibria in the hydrovinylation of styrene because the behaviour of catalytic precursors can be modified substantially when prepared ‘in situ’. While compounds 3 and bisacetonitrile complex 5 were not active as catalysts, the [Pd(η3-2-methylallyl)(η2-styrene)2]+ species formed in the absence of acetonitrile showed some activity in the formation of codimers and dimers. Hydrovinylation reaction between styrene and ethylene was tested using catalytic precursors solutions of [Pd(η3-2-methylallyl)LP]BF4 ionic species (L = CH3CN or styrene) showing moderate activity and good selectivity. Better activities but lower selectivities were found when L = styrene. Only in the case of the precursor containing Ph2PNHCHCH3Ph (a) ligand was some enantiodiscrimination (10%) found.  相似文献   

2.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

3.
Reaction of the bis(nitrile) complex [Mo2Cp2(μ-SMe)3(NCMe)2](BF4) (1) with dimethylpropargylic alcohol, HCCCMe2(OH), at room temperature in dichloromethane produced good yields of the μ-alkynol species [Mo2Cp2(μ-SMe)3{μ-CHCCMe2(OH)}](BF4) (2a) through replacement of the two acetonitrile ligands in 1 by the alkynol. The NMR spectra of 2a indicate a μ-η11 coordination mode for the alkyne which is thereby incorporated into a dimetallacyclobutene ring like that found here by X-ray diffraction (XRD) analysis of the related complex [Mo2Cp2(μ-SMe)3(μ-η11-CHCCO2Me)](BPh4) (2b). When 2a was stirred with Et3N at room temperature in dichloromethane, deprotonation gave high yields of the μ-3-hydroxyalkynyl derivative [Mo2Cp2(μ-SMe)3{μ-η12-CCCMe2(OH)}] (3), together with small amounts of the already-known vinylacetylide [Mo2Cp2(μ-SMe)3{μ-η12-CCC(Me)CH2}] (4) resulting from dehydration of 3. Treatment of 3 with 1 equiv. of HBF4 · OEt2 in diethyl ether at room temperature gave the 3-hydroxyvinylidene derivative [Mo2Cp2(μ-SMe)3{μ-η12-CCHCMe2(OH)}](BF4) (5) as the major product, together with other minor products [Mo2Cp2(μ-SMe)3{μ-η12-CCHC(Me)CH2}](BF4) (6), [Mo2Cp2(μ-SMe)3(μ-η12-CCCMe2)](BF4) (7), [Mo2Cp2(μ-SMe)3(μ-η12-CCH2)](BF4) (8), [Mo2Cp2(μ-SMe)3{μ-η12-CCH(CHMe2)}](BF4) (9) and [Mo2Cp2(μ-SMe)3(μ-O)](BF4) (10). The vinylidene (6) and allenylidene (7) species resulted from dehydration of the 3-hydroxyvinylidene complex 5 whereas the vinylidene derivative 8 was formed by deketonisation of 5. When 3 reacted with a large excess of HBF4 · OEt2 in dichloromethane, the 3-isopropylvinylidene complex 9 was obtained nearly quantatively via a H radical process. When left for several days CD2Cl2 solutions of 5 afforded mainly the vinylidene species 8 by deketonisation and the side-oxoproduct [Mo2Cp2(μ-SMe)3(μ-O)](BF4) (10) by hydrolysis or reaction with oxygen. Addition of nucleophiles (H, OMe, OH, SMe) to the allenylidene complex [Mo2Cp2(μ-SMe)3(μ-η12-CCCPh2)](BF4) (11) resulted in the formation of the corresponding μ-acetylide derivatives [Mo2Cp2(μ-SMe)3(μ-η12-CCCRPh2)] [R = H (12), OMe (16a), OH (17), SMe (16b)], which by further reaction with tetrafluoroboric acid afforded either the vinylidene species [Mo2Cp2(μ-SMe)3{μ-η12-CCH(CRPh2)}](BF4) when R = H (13), or the starting complex 11 when R is a leaving group (OMe). Reaction of 13 with Na(BH4) gave the μ-alkylidyne complex [Mo2Cp2(μ-SMe)3(μ-η1-CCH2CPh2H)] (14) by nucleophilic attack of H at the Cβ carbon atom of the vinylidene chain. Proton addition at Cα in 14 led to the formation of a μ-vinylidene compound 15 containing an agostic C-H bond. New complexes have been characterised by elemental analyses and spectroscopic methods, supplemented for 2b and 3 by X-ray diffraction studies.  相似文献   

4.
The pendant nitrogen atom of the Ph2PPy ligand in the Pd(II)-allyl complexes [PdCl(η3-2-CH3-C3H4)(Ph2PPy)] (1) and [Pd(η3-2-CH3-C3H4)(Ph2PPy)2]BF4 (3) has been protonated with methanesulfonic acid to afford the corresponding pyridinium salts [PdCl(η3-2-CH3-C3H4)(Ph2PPyH)](CH3SO3) (1a) and [Pd(η3-2-CH3-C3H4)(Ph2PPyH)2](CH3SO3)2(BF4) (3a).Protonation strongly influences the 1H and 13C NMR spectral parameters of the allyl moieties of 1a and 3a whose signals resonate at lower fields with respect to the parent species indicating that upon protonation Ph2PPy becomes a weaker σ-donor and a stronger Π-acceptor. The allyl moiety, which in 1 is static, becomes dynamic in 1a, the observed syn-syn and anti-anti exchange being due to deligation of the protonated phosphine from the metal centre. Treatment of complex 3 with diethylamine in the presence of fumaronitrile gives the new Pd(0)-olefin complex [Pd(η2-fumaronitrile)(PPh2Py)2] (4) which has been characterized by elemental analysis and NMR spectroscopy. Low temperature protonation of 4 with methanesulfonic acid leads to the bis-protonated species [Pd(η2-fumaronitrile)(Ph2PPyH)2](CH3SO3)2 (4a) which is stable only at temperatures <0 °C.  相似文献   

5.
Protonation of the cycloheptatriene complex [W(CO)36-C7H8)] with H[BF4] · Et2O in CH2Cl2 affords the cycloheptadienyl system [W(CO)35-C7H9)][BF4] (1). Complex 1 reacts with NaI to yield [WI(CO)35-C7H9)], which is a precursor to [W(CO)2(NCMe)33-C7H9)][BF4], albeit in very low yield. The dicarbonyl derivatives [W(CO)2L25-C7H9)]+ (L2=2PPh3, 4, or dppm, 5) were obtained, respectively, by H[BF4] · Et2O protonation of [W(CO)2(PPh3)(η6-C7H8)] in the presence of PPh3 and reaction of 1 with dppm. The X-ray crystal structure of 4 (as a 1/2 CH2Cl2 solvate) reveals that the two PPh3 ligands are mutually trans and are located beneath the central dienyl carbon and the centre of the edge bridge. The first examples of cyclooctadienyl tungsten complexes [WBr(CO)2(NCMe)2(1-3-η:5,6-C8H11)] (6) and [WBr(CO)2(NCMe)2(1-3-η:4,5-C8H11)] (7) were synthesised by reaction of [W(CO)3(NCR)3] (R=Me or Prn) with 3-Br-1,5-cod/6-Br-1,4-cod or 5-Br-1,3-cod/3-Br-1,4-cod (cod=cyclooctadiene), respectively. Complexes 6 and 7 are precursors to the pentahapto-bonded cyclooctadienyl tungsten species [W(CO)2(dppm)(1-3:5,6-η-C8H11)][BF4] and [W(CO)2(dppe)(1-5-η-C8H11)][BF4] · CH2Cl2.  相似文献   

6.
Treatment of the tetrameric group eight fluoride complexes [MF(μ-F)(CO)3]4 [M = Ru (1a), Os (1b)] with the alkynylphosphane, Ph2PCCPh, results in fluoride-bridge cleavage and the formation of the air-sensitive monomeric octahedral complexes [MF2(CO)2(PPh2CCPh)2] [M = Ru (2a), Os (2b)] in high yield. The molecular structure of 2b reveals a cis, cis, trans configuration for each pair of ligands, respectively. The free alkyne moieties in 2 can be readily complexed to hexacarbonyldicobalt fragments by treatment with dicobalt octacarbonyl to afford [MF2(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2] [M = Ru (3a), Os (3b)]. Evidence for an intramolecular non-bonded contact between a bound fluoride and a cobalt carbonyl carbon atom is seen in the molecular structure of 3a. Thermolysis of 3a at 50 °C results in fluoride dissociation to give [RuF(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2]+ (4), while no reaction occurred with the osmium analogue. Prolonged thermolysis at 120 °C in a sealed vessel of both 3a and 3b gave only insoluble decomposition products.  相似文献   

7.
Two bisphosphite ligands, 25,27-bis-(2,2′-biphenyldioxyphosphinoxy)-26,28-dipropyloxy-p-tert-butyl calix[4]arene (3) and 25,26-bis-(2,2′-biphenyldioxyphosphinoxy)-27,28-dipropyloxy-p-tert-butyl calix[4]arene (4) and two monophosphite ligands, 25-hydroxy-27-(2,2′-biphenyldioxyphosphinoxy)-26,28-dipropyloxy-p-tert-butyl calix[4]arene (5) and 25-hydroxy-26-(2,2′-biphenyldioxyphosphinoxy)-27,28-dipropyloxy- p-tert-butyl calix[4]arene (6) have been synthesized. Treatment of (allyl) palladium precursors [(η3-1,3-R,R′-C3H4)Pd(Cl)]2 with ligand 3 in the presence of NH4PF6 gives a series of cationic allyl palladium complexes (3a-3d). Neutral allyl complexes (3e-3g) are obtained by the treatment of the allyl palladium precursors with ligand 3 in the absence of NH4PF6. The cationic allyl complexes [(η3-C3H5)Pd(4)]PF6 (4a) and [(η3-Ph2C3H3)Pd(4)]PF6 (4b) have been synthesized from the proximally (1,2-) substituted bisphosphite ligand 4. Treatment of ligand 4 with [Pd(COD)Cl2] gives the palladium dichloride complex, [PdCl2(4)] (4c). The solid-state structures of [{(η3-1-CH3-C3H4)Pd(Cl)}2(3)] (3f) and [PdCl2(4)] (4c) have been determined by X-ray crystallography; the calixarene framework in 3f adopts the pinched cone conformation whereas in 4c, the conformation is in between that of cone and pinched cone. Solution dynamics of 3f has been studied in detail with the help of two-dimensional NMR spectroscopy.The solid-state structures of the monophosphite ligands 5 and 6 have also been determined; the calix[4]arene framework in both molecules adopts the cone conformation. Reaction of the monophosphite ligands (5, 6) with (allyl) palladium precursors, in the absence of NH4PF6, yield a series of neutral allyl palladium complexes (5a-5c; 6a-6d). Allyl palladium complexes of proximally substituted ligand 6 showed two diastereomers in solution owing to the inherently chiral calix[4]arene framework. Ligands 3, 6 and the allyl palladium complex 3f have been tested for catalytic activity in allylic alkylation reactions.  相似文献   

8.
Trimethylstannyl (diphenylphosphino)acetate (1), which is readily accessible from potassium (diphenylphosphino)acetate and trimethylstannyl chloride, may serve as the source of (diphenylphosphino)acetate anion in the preparation of coordination compounds. Thus, the reactions between [M(cod)Cl2] (M = Pd and Pt; cod = η22-cycloocta-1,5-diene) and two equivalents of 1 give [M(Ph2PCH2CO22O,P)2] (2 and 3), while the reaction of [{Pd(μ-Cl)Cl(PFur3)}2] (4; Fur = 2-furyl) with one equivalent of 1 yields [SP-4-3]-[PdCl(Ph2PCH2CO22O,P)(PFur3)] (5). The reactions of 1 with the dimers [{Rh(η5-C5Me5)Cl(μ-Cl)}2] and [{Ru(η6-1,4-MeC6H4(CHMe2))Cl(μ-Cl)}2] (at 1-to-metal ratio 1:1) produce O,P-chelated complexes as well, albeit as stable adducts with the liberated Me3SnCl: [RhCl(η5-C5Me5)(Ph2PCH2CO22O,P)] · Me3SnCl (6) and[RuCl(η6-1,4-MeC6H4(CHMe2))(Ph2PCH2CO22O,P)] · Me3SnCl (8). The related complexes with P-monodentate (diphenylphosphino)acetic acid, [RhCl25-C5Me5)(Ph2PCH2CO2H-κ,P)] (7) and [RuCl26-1,4-MeC6H4(CHMe2))(Ph2PCH2CO2H-κP)] (9), were obtained by bridge splitting in the dimers with the phosphinocarboxylic ligand. All new compounds were characterized by spectral methods and combustion analyses, and the structures of 2 · 3CH2Cl2, 3, 4, 5, 6 and 8 were determined by X-ray crystallography.  相似文献   

9.
Complexes [Pd(η1, η2-5-OMe-C8H12)(N,O)]BF4 (N,O=2,6-(i-Pr)2(C6H3)NC(Ph)-C(Ph)O, 1; 2,6-(i-Pr)2(C6H3)NC(Me)-C(Ph)O, 2; 2-benzoylpyridine, 3) were synthesized by the reactions of [Pd(η12-5-OMe-C8H12)Cl]2 with the suitable N,O-ligand. They were tested as catalysts for olefin or alkyne polymerizations. During such reactions 1-3 quantitatively transformed into their η12-1-OMe-C8H12 isomers (1a-3a). The same isomerization occurred in methylene chloride, even in the absence of olefins or alkynes, with a much slower rate. All complexes were fully characterized in solution by multinuclear and multidimensional low temperature NMR spectroscopy. The solid state structures of complexes 1 and 1a were investigated by X-ray single crystal studies. 19F, 1H-HOESY NMR experiments carried out in methylene chloride-d2 at 217 K indicated that the anion prefers to locate on the side of N,O-ligand shifted toward the O-arm in 1-1a and 2-2a while it approaches the N-arm in 3 and 3a compounds.  相似文献   

10.
The synthesis and characterization of pyrazole derivatives of general formula [C6H4-4-R-1-{(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)}] [R = OMe (1a) or H (1b)] with a ferrocenylmethyl substituent are described.The study of the reactivity of compounds 1 with palladium(II) acetate has allowed the isolation of complexes (μ-AcO)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (2) [R = OMe (2a) or H (2b)] that contain a bidentate [C(sp2, phenyl), N] ligand and a central “Pd(μ-AcO)2Pd” unit.Furthermore, treatment of 2 with LiCl produced complexes (μ-Cl)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (3) [R = OMe (3a) or H (3b)] that arise from the replacement of the acetato ligands by the Cl.Compounds 2 and 3 also react with PPh3 giving the monomeric complexes [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}X(PPh3)] {X = AcO and R = OMe (5a) or H (5b) or X = Cl and R = OMe (6a) or H (6b)}, where the phosphine is in a cis-arrangement to the metallated carbon atom. Treatment of 3 with thallium(I) acetylacetonate produced [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}(acac)] (7) [R = OMe (7a) or H (7b)]. Electrochemical studies of the free ligands and the cyclopalladated complexes are also reported. The dimeric complexes 3 also react with MeO2C-CC-CO2Me (in a 1:4 molar ratio) giving [Pd{(MeO2C-CC-CO2Me)2C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}Cl] (8) [R = OMe (8a) or H (8b)], which arise from the bis(insertion) of the alkyne into the σ{Pd-C(sp2, phenyl)} bond of 3.  相似文献   

11.
The syntheses and characterization of two novel ferrocene derivatives containing 3,5-diphenylpyrazole units of general formula [1-R-3,5-Ph2-(C3N2)-CH2-Fc] {Fc = (η5-C5H5)Fe(η5-C5H4) and R = H (2) or Me (3)} together with a study of their reactivity with palladium(II) and platinum(II) salts or complexes under different experimental conditions is described. These studies have allowed us to isolate and characterize trans-[Pd{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}2Cl2] (4a) and three different types of heterodimetallic complexes: cis-[M{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] {M = Pd (5a) or Pt (5b)}, the cyclometallated products [M{κ2-C,N-[3-(C6H4)-1-Me-5-Ph-(C3N2)]-CH2-Fc}Cl(L)] with L = PPh3 and M = Pd (6a) or Pt (6b) or L = dmso and M = Pt (8b) and the trans-isomer of [Pt{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] (7b). In compounds 4a, 5a, 5b and 7b, the ligand behaves as a neutral N-donor group; while in 6a, 6b and 8b it acts as a bidentate [C(sp2,phenyl),N(pyrazole)] group. A comparative study of the spectroscopic properties of the compounds, based on NMR, IR and UV-Visible experiments, is also reported.  相似文献   

12.
Coordination chemistry of a pyridine imidazole-2-ylidene ligand (pyN ˆC) with sterically hindered substituents toward palladium(II) metal ions has been investigated. The palladium carbene complex [(C-pyN ˆC)Pd(η3-allyl)Cl] (3) is prepared via the transmetallation from the corresponding silver carbene complexes with [ClPd(η3-allyl)]2. Upon the abstraction of chloride, coordination of pyridinyl-nitrogen becomes feasible to form [C,N-(pyN ˆC)Pd(η3-allyl)](BF4) (4). Ligand substitution reaction of 4 with triphenylphosphine results in the formation of [(C-pyN ˆC)Pd(PPh3)(η3-allyl)](BF4)], which the pyridinyl-nitrogen donor is substituted by the phosphine. This palladium complex appears to be base sensitive. Treatment of 4 with t-butoxide causes the decomposition to yield the metal nano-particles. Furthermore, de-complexation of 4 takes place under hydrogen atmosphere to generate the carbene precursor, 1-(6-mesityl-2-picolyl)-3-mesitylimidazolium salt. Nevertheless, the palladium complex 4 shows good catalytic activity on the Suzuki-Miyaura and Mizoroki-Heck reactions.  相似文献   

13.
Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en)2(dien)(η2-SbSe4)] (Ln=Ce(1a), Nd(1b)), [Ln(en)2(dien)(SbSe4)] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)(μ-η1,η2-SbSe4)] (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)(η2-SbSe4)] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe4]3− acts as a monodentate ligand mono-SbSe4, a bidentate chelating ligand η2-SbSe4 or a tridentate bridging ligand μ-η1,η2-SbSe4 to the lanthanide(III) center depending on the Ln3+ ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with Eg between 2.08 and 2.51 eV.  相似文献   

14.
Two types of Pd-complexes containing the new N,N′-ligands 2-[3-(4-alkyloxyphenyl)pyrazol-1-yl]pyridine (pzRpy; R = C6H4OCnH2n+1, n = 6 (hp), 10 (dp), 12 (ddp), 14 (tdp), 16 (hdp), 18 (odp)) (1-6), namely c-[Pd(Cl)2(pzRpy)] (7-10) and c-[Pd(η3-C3H5)(pzRpy)]BF4 (11-16), have been synthesised and characterised by different spectroscopic techniques. Those members of the second type containing the largest chains (R = ddp 13, tdp 14, hdp 15, odp 16) have been found to have liquid crystal properties showing smectic A mesophases. By contrast, neither the free ligands pzRpy nor their related c-[Pd(Cl)2(pzRpy)] complexes exhibited mesomorphism. The new synthesised metallomesogens are mononuclear complexes with an unsymmetrical molecular shape as deduced from the X-ray structures of c-[Pd(η3-C3H5)(pzRpy)]BF4 (R = hp, 11; dp, 12). Both compounds, which are isostructural, show a distorted square-planar environment on the palladium centres defined by the allyl and the bidentate pzRpy ligands. The crystal structure reveals that both the counteranion and the pzRpy ligand function as a source of hydrogen-bonding and intermolecular π?π contacts resulting in a 2D supramolecular assembly.  相似文献   

15.
Attempts at methylating cis-[Mo2Cp2(μ-SMe)3L2](BF4) [Cp = η5-C5H5; L = CO (1a) CNxyl (1b), CNBut (1c), NCMe (1d)] with methyl triflate gave the corresponding thioether-bridged cations [Mo2Cp2(μ-SMe)2(μ-SMe2)L2]2+ (42+), except in the case of 1a which did not react at room temperature. The electronic properties of the ancillary ligands L thus have a crucial influence on the course of this reaction. The dimeric compounds [Mo2Cp2(μ-SMe)3(CNBut)(CN)] (2) and [Mo2Cp2(μ-SMe)3{μ-η1-NC(CH3)CH2CN}] (3), which potentially offer the alternatives of S- or N-methylation, reacted with methylating agents to give mainly the S-methylated derivatives 5 and 7. Only in the case of the nucleophilic reactant 2 was N-methylation also observed and isomer 6 was obtained as a minor product together with 5. New complexes have been completely characterised by multinuclear NMR, IR and elemental analysis, supplemented for 5 by X-ray diffraction study at 100 K.  相似文献   

16.
The palladium(0) derivatives of the type [Pd(η2-ol)(LL′)] (2) (ol = dmfu: dimethylfumarate (a), fn: fumaronitrile (b), tmetc: tetramethylethylenetetracarboxylate (c), LL′ = HNSPh: 2-(phenylthiomethyl)-pyridine (A), BiPy: 2,2′-bipyridyl (B), DPPE: bis-diphenylphosphinoethane (C)) were reacted in CH2Cl2 with 1,8-bis(methylpropynoate)naphthalene (1) and 2,2′-bis(methylpropynoate)biphenyl (1′). At variance with the flexible 1′ derivative, the rigid bis-alkyne 1 reacts smoothly to give the corresponding cyclopalladate complexes [PdC4(COOMe)2(Ph)2(LL′)] (3). The rates of reaction were determined and the X-ray diffraction structure of the complex [PdC4(COOMe)2(Ph)2(HNSPh )] (3A) is reported. The reactivity of the complexes [PdC4(COOMe)2(Ph)2(LL′)] (LL′ = HNSPh (3A), BiPy (3B), DPPE (3C)) was studied by reacting these complexes with fn and tetracyanoethylene (tcne), respectively. The ensuing fluoroanthene-like compounds were fully characterized.  相似文献   

17.
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state.  相似文献   

18.
A study of the reactivity of enantiopure ferrocenylimine (SC)-[FcCHN-CH(Me)(Ph)] {Fc =  (η5-C5H5)Fe{(η5-C5H4)-} (1a) with palladium(II)-allyl complexes [Pd(η3-1R1,3R2-C3H3)(μ-Cl)]2 {R1 = H and R2 = H (2), Ph (3) or R1 = R2 = Ph (4)} is reported. Treatment of 1a with 2 or 3 {in a molar ratio Pd(II):1a = 1} in CH2Cl2 at 298 K produced [Pd(η3-3R2-C3H4){FcCHN-CH(Me)(Ph)}Cl] {R2 = H (5a) or Ph (6a)}. When the reaction was carried out under identical experimental conditions using complex 4 as starting material no evidence for the formation of [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(Ph)}Cl] (7a) was found. Additional studies on the reactivity of (SC)-[FcCHN-CH(R3)(CH2OH)] {R3 = Me (1b) or CHMe2 (1c)} with complex 4 showed the importance of the bulk of the substituents on the palladium(II) allyl-complex (2-4) or on the ferrocenylimines (1) in this type of reaction. The crystal structure of 5a showed that: (a) the ferrocenylimine adopts an anti-(E) conformation and behaves as an N-donor ligand, (b) the chloride is in acis-arrangement to the nitrogen and (c) the allyl group binds to the palladium(II) in a η3-fashion. Solution NMR studies of 5a and 6a and [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(CH2OH)}Cl] (7b) revealed the coexistence of several isomers in solution. The stoichiometric reaction between 6a and sodium diethyl 2-methylmalonate reveals that the formation of the achiral linear trans-(E) isomer of Ph-CHCH-CH2Nu (8) was preferred over the branched derivative (9). A comparative study of the potential utility of ligand 1a, complex 5a and the amine (SC)-H2N-CH(Me)(Ph) (11) as catalysts in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with the nucleophile diethyl 2-methylmalonate (Nu) is reported.  相似文献   

19.
The treatment of optically P-chiral tetraphosphine, (3S,6R,9R,12S)-6,9-di-tert-butyl-2,2,3,12,13,13-hexamethyl-3,6,9,12-tetraphosphatetradecane (1), with rhodium(I), palladium(II), and ruthenium(II) complex precursors led to the selective formation of mono-, di-, or trinuclear homo- or heterometallic complexes, [Rh(1)]SbF6 (4), [{Rh(nbd)}2(1)](SbF6)2 (3), [{Pd(η3-allyl)}2(1)](SbF6)2 (5), [{RuCl(η5-C5(CH3)5)}2(1)] (6), and [{RuCl26-benzene)}2(PdCl2)(1)] (8). These complexes were characterized by NMR and X-ray crystallographic analysis.  相似文献   

20.
N-Heterocyclic carbene ligands (NHC) were metalated with Pd(OAc)2 or [Ni(CH3CN)6](BF4)2 by in situ deprotonation of imidazolium salts to give the N-olefin functionalized biscarbene complexes [MX2(NHC)2] 3-7 (3: M = Pd, X = Br, NHC = 1,3-di(3-butenyl)imidazolin-2-ylidene; 4: M = Pd, X = Br, NHC = 1,3-di(4-pentenyl)imidazolin-2-ylidene; 5: M = Pd, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 6: M = Ni, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 7: M = Ni, X = I, NHC = 1-methyl-3-allylimidazolin-2-ylidene). Molecular structure determinations for 4-7 revealed that square-planar complexes with cis (5) or trans (4, 6, 7) coordination geometry at the metal center had been obtained. Reaction of nickelocene with imidazolium bromides afforded the η5-cyclopentadienyl (η5-Cp) monocarbene nickel complexes [NiBr(η5-Cp)(NHC)] 8 and 9 (8: NHC = 1-methyl-3-allylimidazolin-2-ylidene; 9: NHC = 1,3-diallylimidazolin-2-ylidene). The bromine abstraction in complexes 8 and 9 with silver tetrafluoroborate gave complexes [NiBr(η5-Cp)(η3-NHC)] 10 and 11. The X-ray structure analysis of 10 and 11 showed a trigonal-pyramidal coordination geometry at the nickel(II) center and coordination of one N-allyl substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号