首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The ligands (ScSp)-1-diphenylphosphino-2,1′-(1-dicyclohexylphosphinopropanediyl)ferrocene, (ScSp)-PPCyPF, and (ScSp)-1-diphenylphosphino-2,1′-(1-diphenylphosphinopropanediyl)ferrocene, (ScSp)-PPPhPF, have been used in the synthesis of the new Pd(0) and Pd(II) derivatives [Pd(PPCyPF)(DMFU)] (1) (DMFU = dimethylfumarate), [Pd(PPCyPF)(MA)] (2) (MA = maleic anhydride), [Pd(η3-2-Me-C3H4)(PP)]OTf (PP = PPCyPF, 3; PPPhPF, 4) (OTf = triflate), [PdRR′(PP)] (R = Me, R′ = Cl, PP = PPCyPF, 5, PPPhPF, 6; R = R′ = Me, PP = PPCyPF, 7, PPPhPF, 8; R = R′ = C6F5, PP = PPCyPF, 9, PPPhPF, 10). The molecular structure of 7 has been determined by X-ray diffraction. In the cases of complexes 1-4 two isomers are formed depending on the orientation of the ancillary ligand with respect to the ferrocenyl core. The stereochemistry of these complexes has been determined. In complex 6 the two possible isomers are obtained whereas in complex 5 the derivative with the Me group trans to PPh2 is selectively formed. Restricted rotation of the pentafluorophenyl groups with respect to the Pd-C bond has been found in 9 and 10. In all derivatives the conformation of the ferrocenyl ligand is the same as that seen by X-ray diffraction and deduced from NMR data.  相似文献   

2.
Two types of Pd-complexes containing the new N,N′-ligands 2-[3-(4-alkyloxyphenyl)pyrazol-1-yl]pyridine (pzRpy; R = C6H4OCnH2n+1, n = 6 (hp), 10 (dp), 12 (ddp), 14 (tdp), 16 (hdp), 18 (odp)) (1-6), namely c-[Pd(Cl)2(pzRpy)] (7-10) and c-[Pd(η3-C3H5)(pzRpy)]BF4 (11-16), have been synthesised and characterised by different spectroscopic techniques. Those members of the second type containing the largest chains (R = ddp 13, tdp 14, hdp 15, odp 16) have been found to have liquid crystal properties showing smectic A mesophases. By contrast, neither the free ligands pzRpy nor their related c-[Pd(Cl)2(pzRpy)] complexes exhibited mesomorphism. The new synthesised metallomesogens are mononuclear complexes with an unsymmetrical molecular shape as deduced from the X-ray structures of c-[Pd(η3-C3H5)(pzRpy)]BF4 (R = hp, 11; dp, 12). Both compounds, which are isostructural, show a distorted square-planar environment on the palladium centres defined by the allyl and the bidentate pzRpy ligands. The crystal structure reveals that both the counteranion and the pzRpy ligand function as a source of hydrogen-bonding and intermolecular π?π contacts resulting in a 2D supramolecular assembly.  相似文献   

3.
Reactions of sodium 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olates (LH, where the aryl group is an R-substituted phenyl ring such that for L1H: R = H; L2H: R = 2′-CH3; L3H: R = 3′-CH3; L4H: R = 4′-CH3; L5H: R = 4′-OCH3 and L6H: R = 4′-OC2H5) with Ph3SnCl in a 1:1 molar ratio yielded complexes of composition Ph3SnL. The complexes have been characterized by 1H, 13C, 119Sn NMR, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of Ph3SnL1 · 0.5C6H6 (1), Ph3SnL2 (2), Ph3SnL5 · C6H6 (5) and Ph3SnL6 · 0.5C6H6 (6) were determined. The results of the X-ray studies indicated that the benzene solvated compounds 1, 5 and 6 are distorted square pyramid, with one of the phenyl C atoms in the apex while the ligand arrangement around central Sn atom in 2 is distorted trigonal-bipyramidal, with a phenyl C and the oxinato N atoms in axial positions.  相似文献   

4.
Interaction of [Ru(NO)Cl3(PPh3)2] with K[N(R2PS)2] in refluxing N,N-dimethylformamide afforded trans-[Ru(NO)Cl{N(R2PS)2}2] (R = Ph (1), Pri (2)). Reaction of [Ru(NO)Cl3(PPh3)2] with K[N(Ph2PSe)2] led to formation of a mixture of trans-[Ru(NO)Cl{N(Ph2PSe)2}2] (3) and trans-[Ru(NO)Cl{N(Ph2PSe)2}{Ph2P(Se)NPPh2}] (4). Reaction of Ru(NO)Cl3 · xH2O with K[N(Ph2PO)2] afforded cis-[Ru(NO)(Cl){N(Ph2PO)2}2] (5). Treatment of [Rh(NO)Cl2(PPh3)2] with K[N(R2PQ)2] gave Rh(NO){N(R2PQ)2}2] (R = Ph, Q = S (6) or Se (7); R = Pri, Q = S (8) or Se (9)). Protonation of 8 with HBF4 led to formation of trans-[Rh(NO)Cl{HN(Pri2PS)2}2][BF4]2 (10). X-ray diffraction studies revealed that the nitrosyl ligands in 2 and 4 are linear, whereas that in 9 is bent with the Rh–N–O bond angle of 125.7(3)°.  相似文献   

5.
New rhodium and iridium complexes, with the formula [MCl(PBz3)(cod)] [M = Rh (1), Ir (2)] and [M(PBz3)2(cod)]PF6 [M = Rh (3), Ir (4)] (cod = 1,5-cyclooctadiene), stabilized by the tribenzylphosphine ligand (PBz3) were synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. The addition of pyridine to a methanol solution of 1or 2, followed by metathetical reaction with NH4PF6, gave the corresponding derivatives [M(py)(PBz3)(cod)]PF6 [M = Rh (5), Ir (6)]. At room temperature in CHCl3 solution, 4 converted spontaneously to the ortho-metallated complex [IrH(PBz3)(cod){η2-P,C-(C6H4CH2)PBz2}]PF6 (7) as a mixture of cis/trans isomers via intramolecular C-H activation of a benzylic phenyl ring. The reaction of 3 or 4 with hydrogen in coordinating solvents gave the dihydrido bis(solvento) derivative [M(H)2(S)2(PBz3)2]PF6 (M = Rh, Ir; S = acetone, acetonitrile, THF), that transformed into the corresponding dicarbonyls [M(H)2(CO)2(PBz3)2]PF6 by treatment with CO. Analogous cis-dihydrido complexes [M(H)2(THF)2(py)(PBz3)2]PF6 (M = Rh, Ir) were observed by reaction of the py derivatives 5 and 6 with H2.  相似文献   

6.
The reaction between ClCH2-R-CH2Cl, R = p-C6H4, and [Ph3Sn]Li+ yields Ph3Sn-CH2-R-CH2-SnPh3 (1) in high yield. The related known compound R = CH2CH2 (1a) is synthesized by the reaction of the di-Grignard reagent BrMg(CH2)4MgBr with two equivalents of Ph3SnCl. Cleavage of a single Sn-Ph group at each tin centre of both compounds using HCl/Et2O yields the corresponding bis-chlorostannanes Ph2ClSn-CH2-R-CH2-SnClPh2, R = (CH2)4 (2) and R = C6H4 (3), respectively. Compounds 1, 2 and 3 are crystalline solid materials and their single crystal X-ray structures are reported. In the solid state both 2 and 3 form self-assembled ladder structures involving alternating intermolecular Cl-Sn?Cl and Cl?Sn-Cl bonded chains at both ends of the distannanes with 5-coordinate tin atoms. Recrystallization of 3 from CH2Cl2 in the presence of DMF yields the bis-DMF adduct (4) in which no self-assembled structures were noted. Evaluation of the chlorostannanes 2 and 3 against a suite of bacteria, Staphylococcus aureus, Escherichia coli and Photobacterium phosphoreum is reported and compared to the related mono-chlorostannanes Ph2(CH3)SnCl and Ph2(PhCH2)SnCl.  相似文献   

7.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

8.
The ferrocene-based bis(pyrazol-1-yl)borate ligands [Fc2Bpz2] ([2]) and [Fc2BpzPh2] ([2Ph]) have been prepared (Fc: ferrocenyl; pz: pyrazol-1-yl; pzPh: 3-phenylpyrazol-1-yl). Treatment of [2] and [2Ph] with MnCl2 in THF leads to the complexes [Fc2Bpz2Mn(THF)(μ-Cl)2Mn(THF)pz2BFc2] (3) and [Fc2BpzPh2Mn(THF)Cl] (3Ph), respectively, which have been structurally characterized by X-ray crystallography. While there is clearly no ferrocene-MnII π-coordination in the solid-state structure of 3, short MnII-C5H4 contacts are established in 3Ph (shortest Mn-C distances: 2.780(2) Å, 2.872(2) Å). The cyclic voltammograms of K[2Ph] and 3Ph show the first ferrocene/ferricinium redox wave of 3Ph to be shifted anodically by 0.60 V compared with the first FeII/FeIII transition of K[2Ph].  相似文献   

9.
A series of novel phenoxy-phosphinimine ligands (L): L = 2-(Ph2PNR), 4, 6-(CMe3)2-C6H2OH [2, R = SiMe3; 3, R = Ph] have been prepared in the yield of 65-71%. And bis(phenoxy-phosphinimide) group 4 complexes of the type L2MCl2 [4, M = Ti, R = SiMe3; 5, M = Zr, R = SiMe3; 6, M = Ti, R = Ph; 7, M = Zr, R = Ph] have been synthesized by the reaction of the ligands with TiCl4 and ZrCl4. The structure of complex 7 has been determined by X-ray crystallography. The complexes 4-7 showed inactive to ethylene polymerization in the presence of modified methylaluminoxane (MMAO) and i-Bu3Al/Ph3CB(C6 F5)4. These results should be caused by overdoing the steric congestion around central metal.  相似文献   

10.
11.
Coordinatively unsaturated rhodium and iridium complexes having a bulky thiolate, [Cp∗M(PMe3)(SDmp)](BArF4) (1a: M = Rh; 1b: M = Ir; Dmp = 2,6-(mesityl)2C6H3, ArF = 3,5-(CF3)2C6H3), catalyzed the hydrogenation of benzaldehyde, N-benzylideneaniline, and cyclohexanone, under 1 atm of H2 at low temperatures. In these catalytic reactions, the M-H/S-H complexes [Cp∗M(PMe3)(H)(HSDmp)](BArF4) (2a: M = Rh; 2b: M = Ir) generated via H2 heterolysis by 1a or 1b were suggested to transfer both M-H hydride and S-H proton to substrates. The catalytic reactions were terminated by the dissociation of H-SDmp from the metal centers of 2a and 2b that occurs at ambient temperature under H2 atmosphere.  相似文献   

12.
The synthesis of new organotin compounds of general formula Tip2SnRR′ (Tip = 2,4,6-triisopropylbenzene; R = R′ = CH3 (1); R = R′ = CHCH2 (2); R = CH2Ph, R′ = Br (3); R = R′ = CH2CHCH2 (4)) is described herein. The compounds have been characterized by 1H, 13C, 119Sn NMR, mass spectroscopy and elemental analysis. Characterization by single-crystal X-ray diffraction analysis has been obtained for compounds 2, 3 and 4. The reactivity with ionizing agents has been studied by NMR spectroscopy. Compounds 2 and 4 underwent alkyl abstraction by [(CH3CH2)3Si]+[B(C6F5)4] affording stable cationic species (2a, 4a). For the cationic specie 4a a π-interaction of the benzyl group to the metal centre was recognized by solution NMR studies. A cationic species (3a) was generated from compound 3 using AgSbF6 as ionizing agent. The cationic species (2a, 3a) exhibited moderate activity as initiator in the cationic polymerization of 1,4-butadiene and good activity in the ring opening polymerization (ROP) of propylene oxide and ε-caprolactone.  相似文献   

13.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

14.
The first gold(I) trithiophosphite complexes were synthesised and fully characterised. Reaction of (tht)AuX (X = Cl, C6F5; tht = tetrahydrothiophene) with trithiophosphites (RS)3P (R = Me, Ph) and the bicyclic [(SCH2CH2S)PSCH2]2 (2L) afforded the corresponding molecular complexes (RS)3PAuX [R = Me, X = Cl (1); R = Me, X = C6F5 (2); R = Ph, X = Cl (3); R = Ph, X = C6F5 (4)], and 2L(AuX)2 [X = Cl (5), X = C6F5 (6)]. Reacting (tht)AuCl consecutively with two mole equivalents of (MeS)3P and then AgOTf, gave the ionic compound {[(MeS)3P]2Au}OTf (7). The compounds were characterised by multinuclear NMR spectroscopy, IR measurements and mass spectrometry, and the crystal and molecular structures of 1, 3, 6, two polymorphs of 2 as well as the known (MeO)3PAuCl (8) were determined by X-ray diffraction. The halide complexes 1 and 8 are isostructural and exhibit infinite chains of “crossed-sword”-type aurophilic interactions with Au?Au contact distances of 3.2942(3) and 3.1635(4) Å, respectively. Complex 6 exhibits a long Au?Au contact of 3.4671(9) Å. Au?S interactions between 3.3455(7) and 3.520(2) Å are present in the structures of 1 and one polymorph of 2.  相似文献   

15.
Primary alkynes R′CCH [R′ = Me3Si, Tol, CH2OH, CO2Me, (CH2)4CCH, Me] insert into the metal-carbon bond of diruthenium μ-aminocarbynes [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] [R = 2,6-Me2C6H3 (Xyl), 1a; CH2Ph (Bz), 1b; Me, 1c] to give the vinyliminium complexes [Ru2{μ-η13-C(R′)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me3Si, 2a; R = Bz, R′ = Me3Si, 2b; R = Me, R′ = Me3Si, 2c; R = Xyl, R′ = Tol, 3a; R = Bz, R′ = Tol, 3b; R = Bz, R′ = CH2OH, 4; R = Bz, R′ = CO2Me, 5a; R = Me, R′ = CO2Me, 5b; R = Xyl, R′ = (CH2)4CCH, 6; R = Xyl, R′ = Me, 7a; R = Bz, R′ = Me, 7b; R = Me, R′ = Me, 7c]. The related compound [Ru2{μ-η13-C[C(Me)CH2]CHCN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3], (9) is better prepared by reacting [Ru2{μ-CN(Me)(Xyl)}(μ-CO)(CO)(Cl)(Cp)2] (8) with AgSO3CF3 in the presence of HCCC(Me)CH2 in CH2Cl2 at low temperature.In a similar way, also secondary alkynes can be inserted to give the new complexes [Ru2{μ-η13-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Bz, R′ = CO2Me, 11; R = Xyl, R′ = Et, 12a; R = Bz, R′ = Et, 12b; R = Xyl, R′ = Me, 13). The reactions of 2-7, 9, 11-13 with hydrides (i.e., NaBH4, NaH) have been also studied, affording μ-vinylalkylidene complexes [Ru2{μ-η13-C(R′)C(R″)C(H)N(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Bz, R′ = Me3Si, R″ = H, 14a; R = Me, R′ = Me3Si, R″ = H, 14b; R = Bz, R′ = Tol, R″ = H, 15; R = Bz, R′ = R″ = Et, 16), bis-alkylidene complexes [Ru2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Me3Si, R″ = H, 17; R′ = R″ = Et, 18), acetylide compounds [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(CCR′)(Cp)2] (R = Xyl, R′ = Tol, 19; R = Bz, R′ = Me3Si, 20; R = Xyl, R′ = Me, 21) or the tetranuclear species [Ru2{μ-η12-C(Me)CCN(Me)(Bz)}(μ-CO)(CO)(Cp)2]2 (23) depending on the properties of the hydride and the substituents on the complex. Chromatography of 21 on alumina results in its conversion into [Ru2{μ-η31-C[N(Me)(Xyl)]C(H)CCH2}(μ-CO)(CO)(Cp)2] (22). The crystal structures of 2a[CF3SO3] · 0.5CH2Cl2, 12a[CF3SO3] and 22 have been determined by X-ray diffraction studies.  相似文献   

16.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

17.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

18.
The reaction pathway for the formation of the trimethylsiloxysilyllithium compounds (Me3SiO)RR′SiLi (2a: R = Et, 2b: R = iPr, 2c: R = 2,4,6-Me3C6H2 (Mes); 2a-c: R′ = Ph; 2d: R = R′ = Mes) starting from the conversion of the corresponding trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-d) in the presence of excess lithium in a mixture of THF/diethyl ether/n-pentane at −110 °C was investigated.The trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a: R = Et, 1b: R = iPr, 1c: R = Mes) react with lithium to give initially the trimethylsiloxysilyllithium compounds (Me3SiO)RPhSiLi (2a-c). These siloxysilyllithiums 2 couple partially with more trimethylsiloxychlorosilanes 1 to produce the siloxydisilanes (Me3SiO)RPhSi-SiPhR(OSiMe3) (Ia-c), and they undergo bimolecular self-condensation affording the trimethylsiloxydisilanyllithium compounds (Me3SiO)RPhSi-RPhSiLi (3a-c). The siloxydisilanes I are cleaved by excess of lithium to give the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2). In the case of the two trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a: R = Et, 3b: R = iPr) a reaction with more trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a, 1b) takes place under formation of siloxytrisilanes (Me3SiO)RPhSi-RPhSi-SiPhR(OSiMe3) (IIa: R = Et, IIb: R = iPr) which are cleaved by lithium to yield the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2a, 2b) and the trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a, 3b). The dimesityl-trimethylsiloxy-silyllithium (Me3SiO)Mes2SiLi (2d) was obtained directly by reaction of the trimethylsiloxychlorosilane (Me3SiO)Mes2SiCl (1d) and lithium without formation of the siloxydisilane intermediate. Both silyllithium compounds 2 and 3 were trapped with HMe2SiCl giving the products (Me3SiO)RR′Si-SiMe2H and (Me3SiO)RPhSi-RPhSi-SiMe2H.  相似文献   

19.
The ortho-metallated complexes [Pd22(C,C)-C6H4(PPh2CHC(O)C6H5R}2(μ-Cl)2] (R = Ph (1a), NO2 (1b), Br (1c)) were prepared by refluxing equimolar mixtures of Ph3PCHC(O)C6H5R, (R = Ph, NO2, Br) and Pd(OAc)2 in MeOH, followed by an excess of NaCl. The dinuclear complexes (1a-1c) react with silver trifluoromethylsulfonate and bidentate ligands [L = bipy (2,2′-bipyridine), phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), dppp (bis(diphenylphosphino)propane)] giving the mononuclear stabilized orthopalladated complexes in endo position [Pd{κ2(C,C)-C6H4(PPh2CHC(O)R}L](OTf) [R = Ph, L = phen (2a), bipy (3a), dppe (4a), dppp (5a); R = NO2, L = phen (2b), bipy (3b), dppe (4b), dppp (5b); R = Br, L = phen (2c), bipy (3c), dppe (4c), dppp (5c); OTf = trifluoromethylsulfonate anion]. Orthometalation and ylidic C-coordination are demonstrated by an X-ray diffraction study of 2c and 3c. In the structures, the palladium atom shows a slightly distorted square-planar coordination geometry.  相似文献   

20.
Addition of R′2PCl to anilines substituted with di- or trimethylcyclopentadienyl unit at ortho-position affords ortho-phenylene-bridged Me2Cp or Me3Cp/phosophinoamide ligands, 2-(RMe2C5H2)C6H4NHPR′2 (R = Me or H; R′ = Ph, iPr, or Cyclohexyl). Successive addition of Ti(NMe2)4 and Me2SiCl2 to the ligands affords the desired dichlorotitanium complexes, [2-(η5-RMe2C5H)C6H4NPR′ 2κ2N,P]TiCl2 (R = H, R′ = Ph, 9; R = Me, R′ = Ph, 10; R = H, R′ = iPr, 11; R = Me, R′ = iPr, 12; R = H, R′ = Cy, 13; R = Me, R′ = Cy, 14). By using Zr(NMe2)4 instead of Ti(NMe2)4, a zirconium complex, [2-(η5-Me3C5H)C6H4NP(iPr)2κ2N,P]ZrCl2 (15) is prepared. Molecular structures of 10, 14 and [2-(η5-Me2C5H2)C6H4NPPh2κN]Ti(NMe2)2 (16) were determined. The metric parameters determined on the X-ray crystallographic studies and the chemical shifts of the 31P NMR signal indicate that the phosphorous atom coordinates to the titanium in the dichloro-complexes 9-15. The titanium and zirconium complexes show negligible activity in ethylene and ethylene/1-hexene (co)polymerization when activated with MAO or iBu3Al/[Ph3C][B(C6F5)4].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号