首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The preparation and properties of mono- versus bis(carbene) Pd(II) complexes bearing unsymmetrical cyano- and ester-functionalized NHC ligands as potential IR probes were studied in detail. Direct reaction of Pd(OAc)2 with functionalized imidazolium salts afforded either bis(carbene) (3a, c) or monocarbene complexes (5, 6) with a N-coordinated imidazole co-ligand. The latter were exclusively obtained with N-ethylene substituted salts, which were found to undergo N-C cleavage reaction. The milder Ag-carbene transfer reaction on the other hand was tolerable to the length of the substituents and the nature of the functional groups. All bis(carbene) complexes (3a-c, 4a-c) were obtained as a inseparable mixture of square-planar trans-anti and trans-syn rotamers. The identity, ratio and dynamic equilibrium of these rotamers have been investigated and the relatively high rotational barrier for rotamers of 3a was estimated to be about 74 kJ mol−1 at 380 K. All eight complexes were fully characterized by NMR and IR spectroscopies, ESI mass spectrometry and X-ray single crystal and powder diffraction. A preliminary catalytic study showed that ester-functionalized complexes 4a and 4b gave rise to highly active catalyst in the double Mizoroki-Heck coupling of aryl dibromides, while the in situ ester-hydrolyzed complexes were also active in the coupling of activated aryl chlorides.  相似文献   

2.
Reaction of the sterically bulky 1,3-dibenzhydrylbenzimidazolium bromide (Bh2-bimyH+Br) (A) with Pd(OAc)2 in DMSO yielded a mono(carbene) Pd(II) complex 1 with a N-bound benzimidazole derivative, which resulted from an unusual NHC rearrangement reaction. Reaction of A with Ag2O, on the other hand, cleanly gave the Ag(I) carbene complex [AgBr(Bh2-bimy)] (2), which has been used as a carbene-transfer agent to prepare the acetonitrile complex trans-[PdBr2(CH3CN)(Bh2-bimy)] (3). Dissociation of acetonitrile from complex 3 and subsequent dimerization afforded the dinuclear Pd(II) complex [PdBr2(Bh2-bimy)]2 (4) in quantitative yield. All complexes were fully characterized by multinuclear NMR spectroscopies, ESI mass spectrometry and X-ray diffraction analysis. Furthermore, the catalytic activity of complex 4 in aqueous Suzuki-Miyaura cross-coupling reactions was studied and compared with that of its previously reported less bulky analogue [PdBr2(iPr2-bimy)]2.  相似文献   

3.
A facile synthesis of o-hydroxyaryl-substituted N-heterocyclic carbene ligands and their complexes with palladium is presented. This kind of salicylaldimine-like NHC ligands expands the class of available NHC ligands for organometallic catalysts.  相似文献   

4.
Reactions of the ethylene- and methylene-bridged bis(imidazolium) salts with an equivalent amount of silver oxide in dichloromethane at room temperature produced readily the silver NHC compounds [Ag2LBr2]. These compounds are partially soluble in DMF. The X-ray structure determination on 3d (L = 1,1′-dibenzyl-3,3′-ethylenediimidazolin-2,2′-diylidene) reveals the formation of bromide bibridged (Ag2LBr2)n chains and a unique supramolecular motif with weak Ag?Ag interactions of 3.429 Å. Similar to monomeric silver(I) NHC complexes, the silver coordination polymers can also act as carbene transfer reagents for the formation of chelating palladium NHC complexes in excellent yields.  相似文献   

5.
New bis(NHC)-Pd complexes were synthesized and characterized by elemental analysis, 1H NMR, 13C NMR, and IR spectroscopy. The reaction of Pd(OAc)2 and bis(benzimidazolium) salts in DMSO gave the monomeric palladium complex in which the N-heterocyclic carbene was bound to the metal centre. The crystal and molecular structure of the cis-dibromo{1,1′-di[2,3,4,5,6-pentamethylbenzyl]-3,3′-butylenedibenzimidazol-2,2′-diylidene}-palladium(II) complex was determined by single-crystal X-ray diffraction. The activity of the Pd(II) complexes in the direct arylation of benzothiazole with arylbromides was investigated. A preliminary catalytic study showed that these bis(NHC)-Pd complexes were highly active in the direct arylation of benzothiazole with arylbromides.  相似文献   

6.
The synthesis and characterization of new bidentate N-heterocyclic carbene ligands is described. The ligands are derived from methylene (me) and ethylene (et) bridged imidazo[1,5-a]pyridine-3-ylidenes (impy) and can be synthesized readily from imidazo[1,5-a]pyridine and the respective dihaloalkanes. Palladium(II) dihalide complexes bearing these et(impy)2 or me(impy)2 ligands were prepared and also structurally characterized. The angle of the impy plane vs. the C-Pd-C plane is depending on the bridging unit as well as the halide ligands. In the solid state the me(impy)2PdBr2 complex forms a dimer by weak intermolecular Pd-hydrogen bridges. The activity of the Pd-complexes as catalysts for the Heck and Suzuki-Miyaura reactions was tested under various conditions. The catalysts show good activity at 120 °C in Heck and at 85 °C in Suzuki-Miyaura reactions.  相似文献   

7.
The bis(N,N′-diisopropylbenzimidazolin-2-ylidene)Pd(II) complexes trans-[PdBr2(iPr2-bimy)2] (trans-1) and trans-[PdI2(iPr2-bimy)2] (trans-2) have been prepared in good yields by in situ deprotonation of the corresponding N,N′-diisopropylbenzimidazolium salt (iPr2-bimyH+X) (A: X = Br, B: X = I) with Pd(OAc)2 in DMSO at elevated temperature. Salt metathesis of trans-1 or trans-2 with AgO2CCF3 in refluxing CH3CN afforded the novel mixed carbene-carboxylato complex cis-[Pd(O2CCF3)2(iPr2-bimy)2] (cis-3). This halo/trifluorocarboxylato ligand substitution can be regarded as a selective method for the synthesis of cis-configured bis(carbene) complexes. All compounds have been fully characterized by multinuclei NMR spectroscopies and ESI mass spectrometry. X-ray diffraction studies on single crystals of trans-1, trans-2 and cis-3 revealed a square planar geometry and a fixed orientation of the N-isopropyl substituents with the C-H protons pointing to the metal center to maximize rare C-H?Pd preagostic interactions. These interactions are also retained in solution as indicated by the large downfield shift of the isopropyl C-H protons in the 1H NMR spectrum compared to those in precursor salts A or B. A preliminary catalytic study revealed that all complexes are highly active in the Mizoroki-Heck coupling of aryl bromides and chlorides. However, these complexes gave slower conversions as compared to catalysts with less bulky benzimidazolin-2-ylidenes. This is most likely due to the steric bulk of the ligands, which hamper a fast reductive formation of catalytically active Pd(0) species.  相似文献   

8.
This paper describes how the nonpolar polymer polyisobutylene (PIB) can be used as a handle to prepare PIB-bound NHC ligands that are soluble in monophasic mixtures of mixed solvents but phase separable when such solvent systems are perturbed to be biphasic. The results here show that such PIB-bound NHC ligands can be used to synthesize useful palladium catalysts. In this paper, both PIB-bound analogs of an N,N′-bis(2,6-diisopropylphenyl) heterocyclic carbene and simpler N,N′-dialkyl heterocyclic carbene ligand were prepared and were successfully used to form palladium cross-coupling catalysts. The reactivity, recycling and reusability of these catalysts has been examined.  相似文献   

9.
Reaction of 2-arylbenzimidazole with PdCl2(CH3CN)2 in CH2Cl2 affords benzimidazole palladium (II) complexes in high yields. The structure of complexes C1, C2, and C3 has been confirmed by X-ray structure analysis. The configuration of complexes depends on the substituent on the 2-position of benzimidazole. Phenyl affords the complexes in cis-fashion due to π-π stacking of phenyl and benzimidazole. Tolyl affords the complex in trans-fashion. The catalytic studies show that cis-configured 2-phenylbenzimidazole palladium (II) complexes are highly efficient catalysts in the Suzuki-Miyaura reaction.  相似文献   

10.
The synthesis of the Boc-protected 1-(2-aminoethyl)-3-methylimidazolium salts [BocNHCH2CH2ImMe]X [2]X (X = I, PF6) and their straightforward transformation into [NH2CH2CH2ImMe]X [3]X is reported. The reaction between [2]X and Ag2O leads to the formation in the solid state of three different bonding motifs: a biscarbene salt [(NHC-NHBoc)2Ag]PF6 ([4]PF6, NHC-NHBoc = 1-(2-BocNH-ethyl)-3-methyl-imidazolin-2-ylidene), a tetranuclear complex [Ag(NHC-NHBoc)2]2[Ag2I4], (5), and a polymeric silver “staircase” [(NHC-NHBoc)2-Ag4-I4]n, (6) composed of Ag4I4 clusters. The same reaction carried out with [3]I showed that a primary silver mono-NHC-NH2 carbene complex of the type [(NHC-NH2)AgI] (7) is likely to form but it is unstable in solution. The solid state molecular structures of [4]PF6, 5 and 6 were determined by X-ray diffraction analysis, whereas PGSE NMR experiments were employed to investigate the hydrodynamic dimension of the imidazolium salts and silver complexes and, consequently, to gain information on the level of aggregation in solution. PGSE NMR studies were complemented by NOE NMR investigations in order to obtain information on anion-cation relative orientation within aggregates.  相似文献   

11.
A novel polymer-supported N-heterocyclic carbene (NHC) was prepared from chloromethyl polystyrene (CM PS) resin using a simple procedure, and was used as the ligand for palladium (Pd) catalysts. The polymer-supported Pd-NHC complexes efficiently catalyzed the Suzuki cross-coupling of aryl halides and phenylboronic acid in good yields and excellent purities under aqueous conditions.  相似文献   

12.
Ping Liu 《Tetrahedron》2010,66(3):631-122
Salen and half-salen palladium(II) complexes (salden)Pd (1, salden=N,N′-bis(3,5-di- tert-butylsalicylidene)-1,2-dimethylethylenediamine), (hsalph)PdCl (2, hsalph=3,5-di-tert- butylsalicylidene-1-iminophenylene-2-amine), and (salph)Pd (4, salph=N,N′-bis(3,5-di-tert- butylsalicylidene)-1,2-phenylenediamine) were prepared and structurally characterized by X-ray crystallography. Complex 2 proved to exhibit high catalytic activity toward Suzuki-Miyaura reaction. Polyaromatic C3-symmetric derivatives and various fluorinated biphenyl derivatives were readily achieved in good yields using Suzuki-Miyaura reaction catalyzed by complex 2.  相似文献   

13.
New Mo(II) complexes with 2,2′-dipyridylamine (L1), [Mo(CH3CN)(η3-C3H5)(CO)2(L1)]OTf (C1a) and [{MoBr(η3-C3H5)(CO)2(L1)}2(4,4′-bipy)](PF6)2 (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(η3-C3H5)(CO)2(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(η3-C3H5)(CO)2(L3)] (C3), were prepared and characterized by FTIR and 1H and 13C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a κ2-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(η3-C3H5)(CO)2(L3)] with L3 acting as a κ2-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations.The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.  相似文献   

14.
A series of cyclopentadienyl N-heterocyclic carbene copper complexes CpCu(NHC) were synthesized and structurally characterized. The effect of the substituents at the nitrogen atom of the NHC ligands on the structures and thermally stability was discussed.  相似文献   

15.
Air- and moisture-stable NHC (N-heterocyclic carbene)-derived CNC-type pincer complexes of nickel(II) 4a-d were successfully synthesized, and their structures were fully characterized using X-ray crystallography and analytical and spectroscopic methods. These complexes exhibit a high catalytic activity for the Suzuki-Miyaura coupling reaction of aryl bromides and chlorides with aryl- and alkenylboronic acids, providing an array of biphenyls and stilbenes generally in high yields.  相似文献   

16.
Jong-Ho Kim 《Tetrahedron letters》2007,48(40):7079-7084
A core-shell type of polymer-supported N-heterocyclic carbene (NHC) palladium catalyst was applied to Sonogashira cross-coupling reactions without copper cocatalyst under ambient atmosphere. This supported NHC-palladium complex efficiently catalyzed the copper-free Sonogashira reaction of various aryl iodides and bromides with terminal alkynes; the reaction exhibited high dependency on the temperature and the amount of base as well as its nature. In addition, this heterogeneous catalyst exhibited good reusability for the copper-free Sonogashira reaction.  相似文献   

17.
Mononuclear mixed-ligand complexes of Pd(II) containing a N,S-heterocyclic carbene (NSHC) with a secondary alkyl N-substituent and pyridyl ligand, with the general formula [PdI2(C10H11NS)L] (C10H11NS = 3-isopropylbenzothiazolin-2-ylidene; L = pyridine, 2-aminopyridine, 3-iodopyridine and 4-tert-butyl-pyridine) have been synthesized and characterized by X-ray single-crystal crystallography. Both solution and solid-state structures, as evident from their 1H NMR spectra and X-ray structures, show anagostic γ-hydrogen interactions of metal with methine of the substituent on the carbene or pyridyl ligand giving 5-membered-chelate-like structures.  相似文献   

18.
Tetra-ether substituted imidazolium salts, LHX (where LH = N,N′-bis(2,2-diethoxyethyl)imidazolium cation and X = Br, BF4, PF6, BPh4, NO3 and NTf2 anions) were derived from imidazole. Attempts to produce aldehyde functionalized imidazolium salt through acid hydrolysis of LHBr resulted an unexpected tetra-hydroxy compound LAHBr and the dialdehyde compound LBHBr. Reaction of LHBr with Ag2O afforded [L2Ag][AgBr2] (1). Mononuclear Pd-complex trans-[L2PdCl2] (2) and dinuclear Pd-complex [(LPdCl2)2] (3) were obtained by 1:1 and 1:2 reaction of in situ generated Ag-carbene with Pd(CH3CN)2Cl2. cis-[LPdPPh3Cl2] (4) was synthesized from reaction of PPh3 with dinuclear complex 3. Hydrolysis of 3 under acidic conditions also generates a hydroxy derivative 3A and the aldehyde derivative 3B. Direct heating of LHBr with Ni(OAc)2 · 4H2O at 120 °C under vacuum generated trans-[L2NiBr2] (5). These complexes were characterized by NMR, mass, elemental analysis, and X-ray single crystal diffraction analysis. Pd--Pd interaction was observed in 3. All the Pd complexes exhibited excellent catalytic activity in Heck reaction.  相似文献   

19.
Chromium Fischer carbene complexes, [Cr{OMe(R)}(CO)5] have been utilized as a source of chromium carbonyls in the synthesis of chromium NHC complexes. Using the synthetic method, chromium complexes of various NHC ligands were isolated in reasonable yields. Moreover, the method can be employed for the synthesis of molybdenum and tungsten NHC compounds.  相似文献   

20.
A series of Cu(I) and Cu(II) complexes containing substituted ketiminate ligands was synthesized. Reaction of CuCl2 with 2 equiv. of Li[OC(Me)CHC(Me)N(Ar)] in toluene generated dark green solid of Cu[OC(Me)CHC(Me)N(Ar)]2 (1). Similarly, Cu(I) complex, {Cu[OC(Me)CHC(Me)N(Ar)]Li[OC(Me)CHC(Me)N(Ar)]}2 (2) was synthesized by reacting 2 equiv. of Li[OC(Me)CHC(Me)N(Ar)] with CuCl in toluene at room temperature for 12 h. While the reaction of CuCl with Li[OC(Me)CHC(Me)N(Ar)] in the presence of triphenylphosphine in THF solution at room temperature, a three-coordinated Cu[OC(Me)CHC(Me)N(Ar)](PPh3) (3) can be isolated in high yield. Replacing the PPh3 of 3 with N-heterocarbene (NHC) generates Cu[OC(Me)CHC(Me)N(Ar)](NHC) (4) in low yield. Complexes 2, 3, and 4 were characterized by 1H and 13C NMR spectroscopies and all molecules were structurally characterized by X-ray diffractometry. Two coordination modes of ketiminate ligands were found in the molecular structure of 2, one of which is copper-coordinated terminal ketiminates and the other is lithium-copper-coordinated bridging ketiminates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号