首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过循环伏安法(CV法)在铅笔芯电极上成功地制备了聚L-苏氨酸修饰膜,研究了铅笔芯修饰电极上的最佳聚合条件,并对电极的表面结构进行显微表征.同时,研究了盐酸异丙嗪在该修饰电极上的电化学行为.由盐酸异丙嗪在聚L-苏氨酸修饰电极上的氧化和高锰酸钾在金电极上的还原组成双安培检测体系,建立了在外加电压为0V条件下流动注射双安培法直接测定盐酸异丙嗪的新方法.在pH6.8PBS(磷酸盐缓冲溶液)中,该氧化峰峰电流与盐酸异丙嗪浓度在2.0×10-6~1.5×10-3mol/L范围内呈线性关系(r=0.9979,n=12),线性回归方程为I(nA)=1.97×107c-300,方法检出限为8.5×10-7mol/L(S/N=3).RSD为1.60%(n=20),进样频率为100样/h.  相似文献   

2.
制备了纳米氧化铜粒子修饰玻碳电极(Nano-Cu O/GCE),采用扫描电镜进行表征,并研究了双酚A在该电极上的电化学行为。结果表明,该电极表面纳米氧化铜粒子分布均匀,对双酚A有较强的电催化活性。在优化条件下,采用差分脉冲伏安法测定双酚A的线性范围为0.2~4.0μmol/L,检出限为50 nmol/L,并已用于实际样品的测定。  相似文献   

3.
首次研制了以纳米Fe3O4为修饰剂的涂碳型盐酸氯丙那林(CLP)离子选择电极,用于CLP的快速测定.采用循环伏安法和电位分析法对该纳米Fe3O4修饰电极的各项性能进行了测定.结果表明:CLP在纳米Fe3O4修饰电极上的响应得到明显增强,并在1.0×10-6~1.0×10-1 mol/L浓度范围内电极呈线性响应,其级差电位为52mV/pC,计算得到检测下限为8.0×10-7 mol/L,与普通电极相比,该纳米修饰电极的响应范围更广,检测下限更低.用该纳米Fe3O4修饰电极测定猪肉样品中CLP的含量,测定结果与液质串联法相符.  相似文献   

4.
本文采用电化学性能独特的联吡啶钌(Ru(bpy)32+)、氮掺杂石墨烯(NG)和Nafion膜构建了一种新型的盐酸异丙嗪电化学传感器。采用红外光谱和扫描电子显微镜对氮掺杂石墨烯的形貌进行了表征。在Nafion膜中添加导电性好、比表面积大的氮掺杂石墨烯可以增加电子传递速度并且可以防止联吡啶钌扩散到Nafion膜的非电活性区域而增加电极使用寿命。在p H 7.0的磷酸盐缓冲溶液中,盐酸异丙嗪在Ru(bpy)32+/NG/Nafion修饰电极上的循环伏安曲线表明,与单一的裸玻碳电极、Ru(bpy)32+/Nafion修饰电极以及NG/Nafion修饰电极相比,该修饰电极使盐酸异丙嗪得氧化峰电流显著增加,而峰电位明显负移,表明采用Ru(bpy)32+/NG/Nafion膜制备的复合修饰电极对盐酸异丙嗪呈现出较强的电化学催化作用。优化实验条件后,发现在1.0×10-6mol·L-1~1.0×10-4mol·L-1.浓度范围内,盐酸异丙嗪的氧化峰电流与其浓度呈良好的线性关系,检测限为3.6×10-7mol·L-1。而且该电极的重现性、稳定性和选择性良好,采用标准加入法可成功用于商业盐酸异丙嗪注射液中盐酸异丙嗪的测定。  相似文献   

5.
盐酸异丙嗪的微波增敏方波伏安法测定   总被引:2,自引:2,他引:0  
以玻碳电极作工作电极,在微波作用下用循环伏安法和方波伏安法研究了盐酸异丙嗪的电化学特性,结果表明微波可以增大峰电流,并应用于盐酸异丙嗪的检测,建立了一种新的检测盐酸异丙嗪的电化学方法.在最佳实验条件下,无微波作用时用方波伏安法检测盐酸异丙嗪,其响应电流与盐酸异丙嗪的浓度在4.0×10-6 ~1.0×10-4 mol/L范围呈线性关系(r=0.998 2,n=7),线性回归方程为I(A)=0.040 3c(mol/L)+5.0×10-7,检出限为4.0×10-7 mol/L;在微波作用下用方波伏安法检测盐酸异丙嗪,其响应电流与盐酸异丙嗪的浓度在4.0×10-6 ~1.0×10-4 mol/L范围有很好的线性关系(r=0.999 1,n=7),线性回归方程为I(A)=0.045 7c(mol/L)+6.0×10-7,检出限为2.0×10-7 mol/L.在4.0×10-6 ~1.0×10-4 mol/L范围微波增敏的峰电流与无微波条件下峰电流的比值平均值为1.22.该方法用于盐酸异丙嗪片的测定,结果满意.  相似文献   

6.
基于盐酸氯丙嗪对联吡啶钌电化学发光的增敏作用,以石墨烯(Graphene)和Nafion复合膜修饰的玻碳电极(GCE)为工作电极,建立了一种直接测定盐酸氯丙嗪的电化学发光新方法。最佳实验条件下,盐酸氯丙嗪浓度在8.0×10-7~1.2×10-4mol/L范围内与其相对发光强度呈良好线性关系(r=0.998 8),且在该修饰电极上的检出限(S/N=3)为4.0×10-7mol/L。连续测定4.0×10-6mol/L盐酸氯丙嗪溶液11次,发光强度值的相对标准偏差(RSD)为1.4%,表明该修饰电极具有较好的重复性和灵敏度。盐酸氯丙嗪的加标回收率为93%~104%,RSD(n=5)为4.1%。将该方法应用于药片中盐酸氯丙嗪的检测,结果满意。  相似文献   

7.
研究盐酸异丙嗪在β-环糊精修饰多壁碳纳米管玻碳电极上的电化学行为,建立了一种新的测定盐酸异丙嗪的电化学分析方法.在碳纳米管和β-环糊精的协同作用下,用循环伏安法研究了盐酸异丙嗪在修饰电极上的氧化还原特性,结果表明该修饰电极对盐酸异丙嗪具有显著的催化氧化作用.在pH=5.4的磷酸盐缓冲溶液中,氧化峰电流与盐酸异丙嗪浓度在...  相似文献   

8.
以玻碳电极为基底成功制备了聚L-苏氨酸poly(L-Threonine)/多壁碳纳米管(MCNTs)修饰电极(p-L-Thr/ MCNTs/GCE).研究了盐酸氯丙嗪在该修饰电极上的电化学行为.该修饰电极对盐酸氯丙嗪具有明显的电催化氧化作用,并对此电极进行显微表征.本研究将此修饰电极用于流动注射不可逆双安培(FL-IB)体系的构建,即利用盐酸氯丙嗪在p-L-Thr/MCNTs/GCE上的氧化和高锰酸钾(KMnO4)在另一支铂电极上的还原构建了双安培检测体系,成功的建立了在外加电压为0 V条件下流动注射双安培法直接测定盐酸氯丙嗪的方法.在0 V外加电压下,在1 mol/L pH6.8的磷酸盐缓冲溶液的载液中,氧化峰峰电流与盐酸氯丙嗪浓度在2.0×10-6mol/L~4.0×10-5 mol/L范围内呈良好的线性关系,其线性回归方程为i (nA)=9.73×107C-50(r=0.9993,n=6),在4.0×10-5mol/L~10-3 mol/L范围内呈线性关系,其线性回归方程为i (nA)=2.33×107C+4×103 (r=0.9984,n=7),方法检出限为4.0×10-7 mol/L (S/N=3).连续测定1.00×10-4mol/L的盐酸氯丙嗪标准溶液20次,电流值RSD为2.44%,进样频率为90样/h.该方法具有较高的选择性和灵敏度.对盐酸氯丙嗪片中的盐酸氯丙嗪的含量的测定,结果比较满意.  相似文献   

9.
在玻碳电极上成功制备了多壁碳纳米管修饰电极(MWCNTs/GCE),优化了该修饰电极的制备条件.研究了联吡啶钌和盐酸氯丙嗪在该修饰电极上的电化学行为和电化学发光行为,建立了电化学发光法测定尿液中盐酸氯丙嗪的分析方法.结果表明,联吡啶钌-氯丙嗪体系在MWCNTs/GCE上表现出很好的电化学活性和电致化学发光响应,多壁碳纳米管不但增大了玻碳电极的比表面积而且加快了联吡啶钌在电极表面的电化学氧化,对联吡啶钌的电化学发光强度具有明显的增敏作用,同时盐酸氯丙嗪对联吡啶钌在该修饰电极上的电致化学发光具有很强的增敏作用.在0.1 mol/L的磷酸盐(pH 7.5)缓冲溶液中,盐酸氯丙嗪在该修饰电极上的检出限(S/N=3)为6.0×10-7 mol/L,在1.0×10-6 ~4.0×10-4 mol/L范围内浓度与相对发光强度呈线性关系(r=0.995 2).连续测定6.0×10-5 mol/L的盐酸氯丙嗪溶液13次,发光强度的RSD值为2.50%,表明该修饰电极具有较好的重复性.该方法已经成功地应用于尿样的检测.  相似文献   

10.
黄余改  王海燕  胡效亚 《分析化学》2006,34(8):1119-1121
采用电化学方法制备了聚天青B/铜纳米复合物膜修饰电极,研究了葡萄糖在该修饰电极上的氧化行为。讨论了利用该修饰电极测定葡萄糖的最佳条件。结果表明:在优化的条件下,葡萄糖浓度在10μmol/L~10 mmol/L范围内,响应电流与其浓度呈线性关系,其回归方程为:I=0.226 0.047C,(r=0.993),检出限为5μmol/L。该电极与聚天青B修饰电极相比,本法响应更为灵敏,线性范围更宽。  相似文献   

11.
基于盐酸氯丙嗪对联吡啶钌电化学发光的增敏作用,以石墨烯(Graphene)和Nafion复合膜修饰的玻碳电极(GCE)为工作电极,建立了一种直接测定盐酸氯丙嗪的电化学发光新方法。最佳实验条件下,盐酸氯丙嗪浓度在8.0×10-7 ~1.2×10-4 mol/L范围内与其相对发光强度呈良好线性关系(r=0.998 8),且在该修饰电极上的检出限(S/N=3)为4.0×10-7 mol/L。连续测定4.0×10-6 mol/L盐酸氯丙嗪溶液11次,发光强度值的相对标准偏差(RSD)为1.4%,表明该修饰电极具有较好的重复性和灵敏度。盐酸氯丙嗪的加标回收率为93%~104%,RSD(n=5)为4.1%。将该方法应用于药片中盐酸氯丙嗪的检测,结果满意。  相似文献   

12.
本文采用HNO3+H2SO4混酸氧化石墨烯之后,掺杂自制的粒径均一的纳米Cu2O,构建了石墨烯/纳米Cu2O复合修饰电极,并研究了维生素B6在该修饰电极上的电化学行为。结果表明,与裸玻碳电极以及单一材料修饰的电极相比,由于复合修饰电极充分发挥了石墨烯和纳米Cu2O的协同作用,从而对维生素B6的电化学氧化有显著的电催化作用。在优化实验条件下,该方法测定维生素B6的线性检测范围为5.0×10-8~1.5×10-4 mol/L,检出限为2.1×10-8 mol/L。该方法可快速、高灵敏测定药物中维生素B6。  相似文献   

13.
采用水合肼原位化学还原法制备了还原氧化石墨烯(rGO)-多壁碳纳米管(MWCNTs)复合物,将该复合物滴涂于玻碳电极表面,通过电化学方法向该复合膜表面沉积了纳米氧化铜(CuO),制得氧化铜-还原氧化石墨烯-多壁碳纳米管三元复合物修饰电极(CuO-rGO-MWCNTs/GCE)。通过扫描电镜、EDS能谱及电化学交流阻抗技术对该电极进行了表征。研究了L-酪氨酸(L-Tyr)在该修饰电极上的电化学行为。结果表明,CuO-rGO-MWCNTs/GCE对L-Tyr的电氧化表现出高的催化活性。在优化实验条件下,安培法检测L-Tyr的线性范围为2.0×10~(-8)~1.8×10~(-4)mol/L,检出限为5.0×10~(-9)mol/L(S/N=3)。  相似文献   

14.
制备了以纳米Cd S为修饰剂的涂丝型恩诺沙星离子选择电极,并利用透射电镜和X射线衍射技术对制得的纳米粒子进行表征。采用电位分析法对该修饰电极的各项性能进行了测定。纳米Cd S修饰电极的Nernst响应范围为1.0×10~(-2)~1.0×10~(-6)mol/L,级差电位为45 mV/pC,检出为7.4×10~(-7)mol/L;将电极应用于猪肉样品中恩诺沙星的检测,结果与标准方法对比无显著性差异。  相似文献   

15.
采用电化学沉积法制备了纳米金修饰玻碳电极,并用循环伏安法和电化学阻抗法进行了表征,以此建立了一种直接测定鸟嘌呤的电分析方法。在磷酸盐缓冲溶液(pH 6.0)中,研究了鸟嘌呤在纳米金修饰电极上的电化学行为,实验结果表明,纳米金修饰电极可以增强鸟嘌呤在电极表面的吸附,并加快鸟嘌呤在电极表面的电子传输,使其电化学信号明显增大,检测灵敏度大大提高,该修饰电极对鸟嘌呤表现出良好的电催化性能。在优化实验条件下对鸟嘌呤进行测定,方法的线性范围为8.0×10-7~6.0×10-5mol/L,检出限为1.0×10-8mol/L,在鸟嘌呤浓度为1.0×10-5mol/L时测得RSD(n=10)为2.5%。  相似文献   

16.
采用一步电化学共还原的方法将纳米金(AuNPs)、Nafion、电化学还原石墨烯(ERGO)修饰到玻碳电极(GCE)表面,制成修饰电极AuNPs/Nafion/ERGO/GCE。以扫描电镜对其进行表征,用循环伏安法和微分脉冲伏安法研究对苯二酚在该修饰电极上的电催化行为。优化了实验参数,对苯二酚在2.0~100μmol/L及100~800μmol/L浓度范围内与其氧化峰电流呈良好的线性关系,检出限为0.3μmol/L。用该修饰电极成功地进行了实际水样中对苯二酚含量的测定。  相似文献   

17.
以La(OH)3纳米片为修饰剂,制备了基于La(OH)3纳米片修饰玻碳电极(LNP/GCE)。采用循环伏安(CV)法研究了鸟嘌呤(G)和腺嘌呤(A)在该修饰电极上的电化学行为。实验结果表明,在HAc-NaAc缓冲溶液中,该修饰电极对G和A都表现出了良好的电催化性能。在最佳条件下,用差分脉冲伏安(DPV)法对G和A进行了测定,其氧化峰电流与G和A的浓度在0.1~10μmol/L范围内呈良好的线性关系,检测限(S/N=3)分别为0.01μmol/L和0.03μmol/L。将该修饰电极用于DNA中A和G的同时测定,获得较好结果。  相似文献   

18.
常凤霞  尚宗毅  董清  龙志彦  邓怡雪 《应用化学》2020,37(10):1195-1202
以商品化纳米氧化铜和羧化碳纳米管作为玻碳电极修饰材料,结合了两种材料的放大电信号和电催化性能,所构建的复合物修饰电极可区分性质相近的同分异构体邻苯二酚和对苯二酚的信号,同时可进一步放大两种酚的峰电流。 因此该基于纳米氧化铜和碳纳米管的电化学传感器可用于邻苯二酚和对苯二酚的同时检测。 采用循环伏安法对复合物中两种材料的比例、修饰量以及支持电解质pH进行了优化:纳米氧化铜和碳纳米管质量比为5∶1,修饰量为9 μL,pH=7.4的磷酸盐缓冲溶液被用作电解质溶液。 在优化的条件下,邻苯二酚和对苯二酚的微分脉冲伏安扫描峰电流与浓度在6.0×10-7~3.0×10-3 mol/L范围内均呈良好的线性关系,检出限(S/N=3)分别为1.0×10-7和1.6×10-7 mol/L。 该方法具有成本低、操作简便、快速的特点,对实际水样的加标回收率在94.6%~101.1%范围内,具有较好的实际应用前景。  相似文献   

19.
制备了以纳米Fe_2O_3为修饰剂的涂碳型硫酸沙丁胺醇选择电极,采用电位分析方法对其各项性能进行测定。结果表明,该纳米Fe_2O_3修饰电极有很好的能斯特响应,其线性范围为1.0×10~(-6)~0.1 mol/L,级差电位为59 mV/pC,与普通电极相比,响应时间较短(10 s),检出限更低(2.8×10~(-7)mol/L)。将修饰电极应用于猪肉样品中硫酸沙丁胺醇含量的测定,结果与标准方法结果相符。  相似文献   

20.
利用荷叶萃取液生物合成纳米金,并与多壁碳纳米管/L-半胱氨酸复合成修饰电极材料,研究了左旋多巴在该修饰电极上的电化学行为.在0.2 mol/L乙酸-乙酸钠体系(pH=2.6)中,氧化峰电流与左旋多巴浓度在0.6~40μmol/L及60~120μmol/L范围内呈良好的线性关系,检出限达5.2×10-8mol/L.实验结果表明,生物合成纳米金复合多壁碳纳米管/L-半胱氨酸修饰电极具有良好的稳定性和高灵敏度,对实际样品测定的回收率在91.2%~102.5%之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号