首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以3-巯丙基三甲氧基硅烷(MPTS)为单一硅源,十六烷基三甲基溴化铵(CTMAB)存在下,采用一步简单混合,较方便地制得均匀、小粒径的有机硅纳米颗粒。采用原子力显微镜(AFM)、透射电子显微镜(TEM)对有机硅纳米进行表征,测得粒径约为2.5 nm。通过自组装法将其固定在金电极表面,得到均匀、高巯基含量的有机硅纳米修饰电极。采用方波溶出伏安法(SWV),考察了CTMAB浓度、Bi3+浓度、支持电解质、pH值富集电位及富集时间等参数对铅溶出信号的影响。结果表明:在0.2 mol/L HAc-NaAc(pH 5.0)缓冲溶液中,-1.0V电位下富集10 min,Pb2+溶出峰电流与浓度分别在5.0~500×10-12mol/L;2.5~250×10-9 mol/L和250~1250×10-9 mol/L范围内呈线性关系,最低检出浓度为5.0×10-12mol/L。利用本方法测定了实际水样中铅的含量,并与原子荧光光谱法进行对比,结果一致。  相似文献   

2.
应用石墨烯修饰的玻碳电极结合循环伏安法研究了维生素B12在该电极上的电化学行为;用差示脉冲溶出伏安法考察了石墨烯修饰量、缓冲溶液种类、pH、富集电位及富集时间对响应电流的影响。在最佳实验条件下,响应电流与维生素B12的浓度在1.6×10-7~9.5×10-6mol/L范围内有良好的线性相关,检出限为5.9×10-8mol/L。方法可用于药物和人尿样品中维生素B12的检测。  相似文献   

3.
制备了对氨基苯磺酸/石墨烯复合膜修饰电极,研究了汞在修饰电极上的电化学行为。 在0.1 mol/L、pH=4.0的磷酸盐缓冲液中,以此修饰电极为工作电极,在-1.2 V搅拌富集5 min,用差分脉冲伏安法测定0.31 V处的溶出峰电流。 结果表明,该电极显著提高了汞离子的电化学响应信号。 在优化条件下,峰电流与Hg2+的浓度在1.0×10-6~5.0×10-4 mol/L范围内呈良好的线性关系,相关系数为0.995。 方法的检出限为5.0×10-7 mol/L。 将该法用于水样中痕量汞的测定,回收率为92.2%~105.2%。  相似文献   

4.
羧基化碳纳米管修饰碳糊电极伏安法测定食盐中碘酸根   总被引:2,自引:0,他引:2  
应用羧基化多壁碳纳米管(c-MWCNT)修饰碳糊电极,测定食盐中的碘酸根含量.在0.1 mol/L的NaOH电解液中,当IO3-在羧基化多壁碳纳米管修饰碳糊电极表面富集60 s,电位扫速为300 mV/s时,该修饰电极在线性扫描伏安图上能出现一灵敏的阴极溶出峰,峰电位为-0.52 V,峰电流与IO3-浓度在8.0×10-10~5.0×10-8mol/L和1.0×10-7~3.0×10-6mol/L的范围内成良好线关系,相关系数分别为0.999和0.998,检出限可达1.0×10-11mol/L;该修饰电极无汞,稳定性较好,用于加碘食盐中碘酸根含量的测定灵敏度高,平均回收率为101.1%.循环伏安(CV)测试表明,碘酸根在修饰电极上电化学反应是一不可逆过程,其电极反应标准均相速率常数为0.0109 cm.s-1.  相似文献   

5.
采用沉淀法合成了镁铝水滑石和纳米Fe_2O_3,进行了XRD和IR表征.将两者按一定比例混合,制备成修饰的玻碳电极.采用示差脉冲伏安法详细研究了Cd~(2+)在修饰玻碳电极上的电化学响应行为,并对各种实验影响因素进行了优化.结果表明,在0.2 mol/L且pH=6.0的磷酸盐缓冲溶液中,当MgAl-HT与Fe_2O_3质量比为2∶1,制膜的滴涂量为9μL时,1×10~(-6)mol/L的Cd~(2+)在-1.0 V富集1.5 min后,进行电化学扫描,Cd~(2+)在-0.82 V附近出现一灵敏尖锐的溶出峰,溶出峰电流与其浓度在2×10~(-10)~2×10~(-8)mol/L范围内呈良好线性关系,检出限为1.0×10~(-10)mol/L,表明复合膜修饰玻碳电极检测镉离子效果很好.  相似文献   

6.
高产率合成了一种新的Schiff-base结构化合物,并将其表征为高选择性聚合物膜汞离子选择性电极载体。考察了不同增塑剂及离子交换剂对膜电极响应性能的影响,在最佳膜组分条件下测得该电极对汞离子的线性响应范围为1.0×10-6~3.0×10-4mol/L,响应斜率为(29.3±0.3)mV/dec,检出限为2.6×10-7mol/L;该电极响应速率快(小于12 s),可在较宽的pH范围内(pH2.8~5.6)使用,且其它常见碱金属、碱土金属以及过渡金属离子对该测试电极的干扰小;可准确检测自来水中汞离子的浓度。  相似文献   

7.
实验采用改进的Hummers法合成氧化石墨烯并将其修饰在碳糊电极(CPE)的表面制备了氧化石墨烯修饰碳糊电极(GO/CPE),以该修饰电极为工作电极,采用方波溶出伏安法对锌离子进行测定。结果表明:在十二烷基苯磺酸钠的增敏作用下,在0.1mol·L~(-1)KCl溶液中,该修饰电极对锌的氧化溶出有良好的催化作用,溶出峰电流与Zn~(2+)的浓度在4.0×10-8mol·L~(-1)~2.0×10-7mol·L~(-1)呈良好的线性关系,检出限为1.8×10~(-10)mol·L~(-1).该修饰电极用于实际样品中锌的含量分析,结果令人满意。  相似文献   

8.
制备了碳量子点/聚中性红膜修饰电极。采用了透射电子显微镜和荧光光谱对制备的碳量子点进行表征。利用循环伏安法、示差脉冲伏安法考察了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为。结果表明,在0.1 mol/L磷酸盐缓冲溶液中,该修饰电极对鸟嘌呤和腺嘌呤的氧化具有明显的电催化作用。在最佳条件下,鸟嘌呤和腺嘌呤的示差脉冲伏安响应和其浓度分别在1.0×10~(-6)~2.0×10~(-4)mol/L和5.0×10~(-6)~2.0×10~(-4)mol/L范围中呈良好的线性关系,检测限分别为3.0×10~(-7)mol/L和4.8×10~(-7)mol/L(S/N=3)。该修饰电极能够用于复杂样品中鸟嘌呤和腺嘌呤的检测及实际样品分析。  相似文献   

9.
利用水热法合成了纳米氧化锌/碳纳米管复合材料,将该复合材料滴涂在玻碳电极表面,制得纳米氧化锌-碳纳米管复合材料修饰电极(ZnO-MWCNTs/GCE)。在阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)存在下,利用循环伏安法研究了双酚A在修饰电极上的电化学行为。考察了溶液pH值、CTAB浓度和富集时间等对测定的影响。结果表明,在pH 7.0的含8.0×10-5mol/L CTAB的磷酸盐缓冲液中,该修饰电极对双酚A具有良好的电化学响应,双酚A在修饰电极上的氧化峰电流为裸电极上的7倍。在优化条件下,采用差分脉冲伏安法对双酚A进行测定。双酚A的峰电流在5.0×10-8~1.5×10-5mol/L浓度范围内呈良好的线性关系,检出限(S/N=3)为1.0×10-8mol/L。对1.0×10-5mol/L双酚A平行测定8次的相对标准偏差为4.6%。该法用于塑料制品中溶出双酚A的测定,回收率为99%~107%,结果满意。  相似文献   

10.
分别采用共沉淀法和溶胶-凝胶法合成了MgA l水滑石和锐钛矿型纳米TiO_2,进行了XRD和TG-DTA表征。将两者按一定比例混合,制备成修饰的玻碳电极。采用示差脉冲伏安法详细研究了Pb~(2+)在修饰玻碳电极上的电化学响应行为,并对各种实验影响因素进行了优化。结果表明,在0.1 moL/L的NaA c-HAc缓冲溶液中,当pH=4,MgA l水滑石与TiO_2的质量比为1:1,制膜的滴涂量为9μL时,1×10~(-5)mol/L的Pb~(2+)在-1.2V富集1.5 min后,进行电化学扫描,Pb~(2+)在大约-0.47 V出现一灵敏尖锐的溶出峰,溶出峰电流与其浓度在1×10~(-9)~2×10~(-7)mol/L范围内呈良好线性关系,检出限为1.0×10~(-10)mol/L,表明复合膜修饰玻碳电极检测铅离子效果很好。  相似文献   

11.
制备了以纳米Cd S为修饰剂的涂丝型恩诺沙星离子选择电极,并利用透射电镜和X射线衍射技术对制得的纳米粒子进行表征。采用电位分析法对该修饰电极的各项性能进行了测定。纳米Cd S修饰电极的Nernst响应范围为1.0×10~(-2)~1.0×10~(-6)mol/L,级差电位为45 mV/pC,检出为7.4×10~(-7)mol/L;将电极应用于猪肉样品中恩诺沙星的检测,结果与标准方法对比无显著性差异。  相似文献   

12.
痕量Pb2 在nano-TiO2膜电极上的电化学行为及应用研究   总被引:1,自引:0,他引:1  
利用纳米二氧化钛(nano-TiO2)的结构特性制备了一种nano-TiO2膜修饰的玻碳电极.采用阳极溶出伏安法详细研究了Pb2 在nano-TiO2膜修饰玻碳电极上的电化学响应行为,并对各种实验参数进行了优化.实验结果表明,在0.10 mol/L HAc-NaAc缓冲体系(pH 4.0)中,于-1.2 V富集搅拌480 s,再静置60 s后阳极化扫描,Pb2 在-0.48 V左右出现一灵敏的阳极溶出峰.Pb2 的溶出峰电流与其浓度在2.0×10-9 ~1.0×10-7 mol/L范围内呈良好的线性关系,检出限可达1.0×10-10 mol/L.该修饰电极具有一定的抗干扰能力,将其应用于实际水样中Pb2 的检测,结果令人满意.  相似文献   

13.
通过机械化学合成法合成了一种共价有机框架材料TpPa-1,以此作为电极材料制备化学修饰电极,研究了修饰电极的差分脉冲阳极溶出伏安法(DPASV)同时测定铜离子和汞离子。结果表明,TpPa-1/Nafion修饰电极在磷酸盐缓冲溶液中可实现对Cu^2+和Hg^2+的同时检测。Cu^2+的检出限为5.0×10^-8 mol/L线性范围为1.0×10^-7~5.0×10^-5 mol/L,R^2=0.9975。Hg^2+的检出限为1.0×10^-8 mol/L,线性范围为2.0×10^-8~1.0×10^-4 mol/L,R^2=0.9988。采用上述方法对实际样品进行检测,回收率为97.6%~105.5%,RSD均小于4.0%。  相似文献   

14.
制备了石墨烯薄膜修饰玻碳电极,并通过循环伏安法研究了对硫磷(PT)在该修饰电极上的电化学行为。对支持电解质、溶液pH值等实验条件进行了优化。结果表明,在0.1mol/L的乙酸-乙酸钠缓冲溶液(pH=5.0)中,PT在石墨烯薄膜修饰电极上具有良好的电化学响应,对比裸玻碳电极,PT的氧化峰峰电流显著提高,表明修饰膜对PT的电化学氧化具有一定的催化作用。PT的氧化峰电流及其浓度分别在1.0×10-7~1.0×10-6 mol/L范围内和3.0×10-6~1.0×10-5 mol/L范围内呈良好的线性关系,线性相关系数分别是0.9956和0.9874,检出限为1.0×10-8 mol/L。将该修饰电极应用于小白菜中残留PT的测量,结果比较满意。  相似文献   

15.
利用电沉积方法制备Cu-Ag/石墨烯修饰玻碳电极,研究了亚硝酸盐在该修饰电极上的电化学行为,建立了电化学测定亚硝酸盐的新方法。在磷酸盐缓冲溶液中,修饰电极对亚硝酸盐的电化学响应具有很好的催化作用。利用线性扫描伏安法对亚硝酸盐的电化学氧化进行定量分析,亚硝酸盐的氧化峰电流与其浓度在8×10~(-9)~8×10~(-7)mol/L和8×10~(-7)~2×10~(-6)mol/L范围内呈良好的线性关系,检出限低至8×10~(-9)mol/L。  相似文献   

16.
抗坏血酸在普鲁士蓝修饰的丝网印刷电极上的电催化氧化   总被引:2,自引:0,他引:2  
制备了普鲁士蓝修饰的丝网印刷电极,研究了该修饰电极对抗坏血酸的催化氧化作用。在pH5.0的0.2mol/L磷酸盐缓冲溶液中,修饰电极对抗坏血酸显示出快速的电化学响应,较高的稳定性、重现性和催化活性,测定的线性范围为5.0×10-6~8.0×10-3mol/L,相关系数为0.998,检出限为3.0×10-6mol/L(3σ)。已对实际样品进行了测定。  相似文献   

17.
采用循环伏安法和差分脉冲伏安法研究了沙丁胺醇在石墨烯/聚硫堇修饰玻碳电极上的电化学行为,该电化学传感器对沙丁胺醇显示出良好的电化学响应。在pH 7.0,扫描范围为-0.6~0.4 V,扫速为80 mV/s条件下,沙丁胺醇的氧化峰电流与其浓度在3.1×10-7~8.5×10-5mol/L范围内呈良好线性关系,检出限达9.6×10-8mol/L。结果显示石墨烯/聚硫堇修饰玻碳电极具有良好的重现性和稳定性。  相似文献   

18.
首次研制了以纳米Fe3O4为修饰剂的涂碳型盐酸氯丙那林(CLP)离子选择电极,用于CLP的快速测定.采用循环伏安法和电位分析法对该纳米Fe3O4修饰电极的各项性能进行了测定.结果表明:CLP在纳米Fe3O4修饰电极上的响应得到明显增强,并在1.0×10-6~1.0×10-1 mol/L浓度范围内电极呈线性响应,其级差电位为52mV/pC,计算得到检测下限为8.0×10-7 mol/L,与普通电极相比,该纳米修饰电极的响应范围更广,检测下限更低.用该纳米Fe3O4修饰电极测定猪肉样品中CLP的含量,测定结果与液质串联法相符.  相似文献   

19.
纳米银粒子修饰电极法测定血红蛋白   总被引:19,自引:0,他引:19  
报道了一种利用纳米材料修饰电极检测血红蛋白的新方法。制作了以纳米银粒子修饰的银电极,并研究了血红蛋白在该修饰电极上的直接电化学行为。实验结果表明,血红蛋白在该修饰电极上具有良好的电流响应。在2.0×10-7~1.0×10-5mol/L浓度范围内,血红蛋白的氧化峰电流与其浓度呈良好线性关系;检出限为7.4×10-8mol/L。研究了该修饰电极对血红蛋白的催化机理,利用该电极所建立的方法实现了对血红蛋白的分析测定。  相似文献   

20.
在铜或硒存在下利用悬汞电极阴极溶出测定砷已见报道,但使用玻碳电极进行砷的测定尚属少见。砷的阳极溶出法因汞电极中汞的氧化干扰而无法进行。本实验采用就地镀铜玻碳电极作工作电极成功地进行砷的阳极溶出法测定。 (一)操作步骤加入适量的砷、铜及硫酸溶液到50ml容量瓶中使砷的最终浓度为1.0×10~(-7)mol/L-9.0×10~(-6)mol/L,铜(Ⅱ)为4.0×10~(-6)mol/L,硫酸为0.6mol/L。将溶液转入石英电解池中,通氮除氧5min,在-0.60V沉  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号