首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文用浓硝酸活化多层碳纳米管,将壳聚糖与活化后的碳纳米管制备成复合材料,并将其滴涂于玻碳电极表面,制备出烟酰胺腺嘌呤二核苷酸(NADH)的电化学传感器。采用循环伏安法研究了该传感器的电化学性质以及对NADH的电催化氧化行为。实验结果表明,NADH在该电极上于 0.37V(vs.SCE)左右出现一氧化峰,与未修饰的玻碳电极相比,该修饰电极明显降低了NADH的氧化峰电位,消除了反应中间产物对电极表面的污染问题。对实验条件进行了优化,建立了碳纳米管/壳聚糖修饰电极微分脉冲伏安法测定NADH的方法。本文方法具有较好的重现性和选择性,对NADH检测的线性范围为1.0×10-4~9.0×10-3mol/L,检测限为9.2×10-5mol/L。  相似文献   

2.
本文将(4,4′,4,″4)四羧基酞菁钴(CoTcPc)共价键合到自组装在Au电极表面的半胱胺单分子层上,获得了自组装单分子膜修饰电极(CoTcPc-Cys CME),研究了它的电化学性质,并对电极表面进行了表征。电极表面覆盖度为3.7×10-10mol/cm2,电子转移速率常数Ks为1.21 s-1。实验表明,在pH 7.0的磷酸盐缓冲溶液(PBS)中,CoTcPc/Au对烟酰胺嘌呤二核苷酸(NADH)的氧化具有良好的电催化作用,使NADH在裸金电极上的氧化电位降低了近300 mV,催化电流与cNADH在5.0×10-6~3.2×10-3mol/L范围有线性关系,检出限为2.8μmol/L。测定了电极催化NADH的米氏催化常数KMapp和催化反应速率常数K。  相似文献   

3.
制备了聚亚甲蓝一碳纳米管修饰的玻碳电极(PMB-SWCNT's/GCE),并研究了烟酰胺腺嘌呤二核苷酸(NADH)在此电极上的电化学行为.结果表明:此修饰电极对NADH表现出协同电催化作用和较好的响应性能.在pH 7.0的磷酸盐缓冲溶液中可观察到NADH氧化峰电位的正移及其峰电流的增加,当NADH的浓度在5.0×10-6~7.0×10-4mol·L-1范围内,与相应的氧化峰电流值之间存在线性关系.方法的检出限(3S/N)为1.4×10-6mol·L-1,所提出的方法应用于生物材料样品中NADH的直接测定,测得方法的平均回收率为99.5%.  相似文献   

4.
利用静电层层组装的方式在印刷电极表面制备了(多壁碳纳米管/邻苯二甲酸二乙二醇二丙烯酸酯(PDDA))n多层膜,采用电位扫描电聚合法在修饰有多层膜的印刷电极表面聚合甲苯胺蓝,制备了聚甲苯胺蓝-(多壁碳纳米管/PDDA)n杂化膜修饰电极。扫描电镜实验表明,多壁碳纳米管均匀分布在杂化膜中,且多壁碳纳米管的掺杂使杂化膜表现出明显的多孔性。电化学实验表明,杂化膜具有良好的导电性且多壁碳纳米管的掺杂显著增加了聚甲苯胺蓝在电极表面的担载量,提高了检测灵敏度。在pH7.4的磷酸盐缓冲液中,杂化膜修饰电极对β-烟酰胺腺嘌呤二核苷酸(NADH)的氧化具有良好的催化作用,与裸电极相比氧化电位降低了560 mV,灵敏度明显提高。在8.7×10-8~1.3×10-4mol/L范围内,NADH的浓度与氧化电流呈线性关系,检出限为2.8×10-8mol/L,该修饰电极可用于NADH的测定。  相似文献   

5.
本文利用滴涂于玻碳表面的Nafion膜中负电性的磺酸基与天青I阳离子之间的静电作用,以实现天青I的固定化,从而制备出Nafion/天青I电催化型烟酰胺腺嘌呤二核苷酸(NADH)传感器。采用循环伏安法考察了传感器的电化学性质,并研究了该修饰电极对NADH的电催化作用。实验结果表明:该修饰电极对NADH有良好的电催化作用,NADH氧化峰电位比未修饰的玻碳电极负移了660 mV,响应电流与NADH的浓度在8.7×10-5~1.5×10-2mol/L范围内呈良好的线性关系。该方法检出限为3.0×10-5mol/L。  相似文献   

6.
制备了碳量子点/聚中性红膜修饰电极。采用了透射电子显微镜和荧光光谱对制备的碳量子点进行表征。利用循环伏安法、示差脉冲伏安法考察了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为。结果表明,在0.1 mol/L磷酸盐缓冲溶液中,该修饰电极对鸟嘌呤和腺嘌呤的氧化具有明显的电催化作用。在最佳条件下,鸟嘌呤和腺嘌呤的示差脉冲伏安响应和其浓度分别在1.0×10~(-6)~2.0×10~(-4)mol/L和5.0×10~(-6)~2.0×10~(-4)mol/L范围中呈良好的线性关系,检测限分别为3.0×10~(-7)mol/L和4.8×10~(-7)mol/L(S/N=3)。该修饰电极能够用于复杂样品中鸟嘌呤和腺嘌呤的检测及实际样品分析。  相似文献   

7.
制备了石墨烯薄膜修饰玻碳电极,并通过循环伏安法研究了对硫磷(PT)在该修饰电极上的电化学行为。对支持电解质、溶液pH值等实验条件进行了优化。结果表明,在0.1mol/L的乙酸-乙酸钠缓冲溶液(pH=5.0)中,PT在石墨烯薄膜修饰电极上具有良好的电化学响应,对比裸玻碳电极,PT的氧化峰峰电流显著提高,表明修饰膜对PT的电化学氧化具有一定的催化作用。PT的氧化峰电流及其浓度分别在1.0×10-7~1.0×10-6 mol/L范围内和3.0×10-6~1.0×10-5 mol/L范围内呈良好的线性关系,线性相关系数分别是0.9956和0.9874,检出限为1.0×10-8 mol/L。将该修饰电极应用于小白菜中残留PT的测量,结果比较满意。  相似文献   

8.
采用滴涂法和电沉积法制备了氧化石墨烯/铁氰化铈(CeFe(CN)6)纳米复合膜修饰玻碳电极。用扫描电镜对氧化石墨烯和氧化石墨烯/CeFe(CN)6纳米复合膜进行了表征。分别用循环伏安法和差分脉冲伏安法研究了扑热息痛和咖啡因在修饰电极上的电化学行为。结果表明,在0.1 mol/L醋酸盐缓冲溶液(pH5.0)中,扑热息痛和咖啡因在此修饰电极上具有良好的电化学行为,扑热息痛和咖啡因分别在1.0×10-7~6.0×10-5mol/L和1.0×10-6~1.3×10-4mol/L浓度范围内与电化学响应信号呈良好的线性关系,相关系数分别为0.990和0.992;信噪比为3时,扑热息痛和咖啡因检出限分别为5.0×10-8mol/L和5.2×10-7mol/L。将本方法用于人尿样品分析,回收率为96.1%~105.4%。  相似文献   

9.
制备了十六烷基三甲基溴化铵-氧化钕纳米修饰电极。用循环伏安法和示差脉冲伏安法研究了NO2-在该修饰电极上的电化学行为,结果表明,该修饰电极对NO2-的氧化具有良好的电催化能力,NO2-的氧化峰电流与其浓度在3.33×10-8~1.04×10-6mol/L范围内呈现良好的线性关系,检测限为9.86×10-9mol/L(S/N=3)。此外,该修饰电极具有良好的重现性和稳定性。本方法可用于NO2-实际样品的测定。  相似文献   

10.
采用滴涂法制备了单壁碳纳米管修饰的纳米碳纤维电极,研究了多巴胺(DA)、抗坏血酸(AA)及其混合溶液在修饰前后电极上的电化学行为。在20 mmol/L Tris-HCl(pH 7.4)缓冲溶液中,修饰电极对DA和AA具有很好的电催化作用。采用差示脉冲伏安法对DA与AA混合溶液氧化峰电流与浓度的关系进行定量分析,DA和AA的氧化峰电流在1.0×10-7~5.0×10-5mol/L和1.0×10-5~1.0×10-3mol/L范围内与浓度呈线性关系,其线性回归方程及相关系数分别为Ip=0.0012c+4×10-9,r=0.9907;Ip=10-5c+7×10-10,r=0.9974,两种物质的检测限分别达到8.0×10-9mol/L和2×10-6mol/L。  相似文献   

11.
研究多巴胺(DA)和抗坏血酸(AA)在聚伊文思蓝(Evans Blue)修饰电极上的伏安行为,建立差示脉冲伏安测定法.在pH4.5磷酸盐缓冲液中,聚伊文思蓝修饰电极对DA和AA有显著的增敏和电分离作用.DA和AA氧化峰电流与浓度分别在1.0×10-6~3.0×10-5mol/L和5.0×10-6~1.05×10-4mol/L范围内呈良好的线性关系,检测限分别为2.5×10-7mol/L和3.0×10-7mol/L.当DA与AA共存时,由该修饰电极检测的二者氧化峰电位差达184 mV,故可同时测定DA和AA,并有效消除其它组分对DA测定的干扰,已用于实际样品中DA和AA含量的测定,结果令人满意.  相似文献   

12.
将金纳米粒子电沉积在石墨烯修饰的玻碳电极表面,研究了维生素B6(VB6)在该修饰电极上的电化学行为。扫描电镜用于该修饰电极组装过程的形貌表征。实验结果表明:VB6在此修饰电极上出现一个良好的氧化峰,在最佳实验条件下,其氧化峰电流与VB6浓度在5.0×10-8~2.0×10-5 mol/L范围内呈线性关系,其线性回归方程为I(μA)=0.5697c(μmol/L)+0.06275,R=0.9992,检出限为2.0×10-8 mol/L(S/N=3)。一些常见的干扰物质如抗坏血酸不干扰VB6的检测。方法已用于片剂中VB6的含量的检测。  相似文献   

13.
利用电沉积方法制备Cu-Ag/石墨烯修饰玻碳电极,研究了亚硝酸盐在该修饰电极上的电化学行为,建立了电化学测定亚硝酸盐的新方法。在磷酸盐缓冲溶液中,修饰电极对亚硝酸盐的电化学响应具有很好的催化作用。利用线性扫描伏安法对亚硝酸盐的电化学氧化进行定量分析,亚硝酸盐的氧化峰电流与其浓度在8×10~(-9)~8×10~(-7)mol/L和8×10~(-7)~2×10~(-6)mol/L范围内呈良好的线性关系,检出限低至8×10~(-9)mol/L。  相似文献   

14.
多壁纳米管修饰电极电催化3,4-二羟基苯甲酸研究   总被引:2,自引:0,他引:2  
李明齐  蔡铎昌  何晓英 《电化学》2005,11(4):453-456
应用循环伏安(CV)和方波伏安(SWV)法研究3,4-二羟基苯甲酸(DHBA)在多壁碳纳米管修饰的玻碳电极上的电化学行为.实验表明:该修饰电极对DHBA有较强的电催化作用.由方波伏安法测定的氧化峰电流在DHBA浓度为4.0×10-6~1.0×10-4mol/L和2.0×10-4~8.0×10-4mol/L范围内分段呈线性变化关系;相关系数各为0.9995和0.9992,检测限1.0×10-6mol/L.  相似文献   

15.
用电聚合的方法制备了聚茜素黄R膜修饰的玻碳电极,研究了尿酸在该电极上的电化学行为。结果表明,该修饰电极对尿酸的氧化具有良好的电催化能力。示差脉冲伏安法测定尿酸的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol/L范围内呈现良好的线性范围,检测限为8.6×10-7 mol/L(S/N=3)。本方法用于人尿液中尿酸含量的测定,结果令人满意。  相似文献   

16.
将金纳米粒子(AuNPs)电沉积在N,P/石墨烯(N,P/Graphene)修饰的玻碳电极表面,研究了维生素B_6(VB_6)在该修饰电极上的电化学行为。实验结果表明:VB_6在该修饰电极上出现一个良好的氧化峰,在最佳实验条件下,其氧化峰电流与VB_6的浓度在2.0×10~(-5)~4.0×10~(-4) mol/L范围内呈线性关系,相关系数R=0.998,检出限为9.2×10~(-6) mol/L。一些常见的物质如K~+、Na~+、Zn~(2+)、葡萄糖(Glu)不干扰VB_6的检测。此方法已用于片剂中VB_6含量的检测,获得较好结果。  相似文献   

17.
氟嗪酸在碳纳米管修饰电极上的电化学行为及含量的测定   总被引:2,自引:0,他引:2  
在玻碳电极上制备了多壁碳纳米管/Nafion(MWNTs-Nafion)膜,用交流阻抗谱(EIS)、循环伏安法(CV)、线性扫描伏安法(LSV)研究了氟嗪酸在该膜上的电化学行为。与裸玻碳电极相比,这种纳米结构膜修饰的电极对氟嗪酸的电化学氧化显现出极好的促进作用,氟嗪酸的氧化峰电流明显增强,在修饰电极上于 0.97 V处产生了1个灵敏氧化峰。LSV测定氟嗪酸的线性范围为1.0×10-8~1.0×10-6mol/L和1.0×10-6~2.0×10-5mol/L,开路富集400 s后,检出限为8.0×10-9mol/L(3倍信噪比),方法可用于人尿中氟嗪酸的实时测定。  相似文献   

18.
用电沉积方法制备了纳米铜修饰电极并将其用于混合溶液中多巴胺(DA)和抗坏血酸的同时测定。在优化的实验条件下,修饰电极对多巴胺和抗坏血酸具有良好的电催化响应,多巴胺的峰电流与浓度在8.0×10-7mol/L~1.0×10-4mol/L范围内成很好的线性关系,抗坏血酸的氧化峰电流与其浓度在8.0×10-6mol/L~1.0×10-3mol/L的范围成良好的线性关系。该修饰电极制备简单、稳定性好,用于样品检测,效果良好。  相似文献   

19.
用硬模板法合成了有序介孔碳(OMC),并以壳聚糖(Chitosan)作为分散剂制备了有序介孔碳-壳聚糖复合膜(OMC-Chitosan)修饰电极.应用该电极研究了尿酸(UA)的电化学行为以及实际样品的分析检测.在0.1 mol/L(pH 6.5)的磷酸盐(PBS)缓冲溶液中,UA在OMC-Chitosan修饰电极上于0.334 V处产生一灵敏的不可逆氧化峰,氧化峰电流(ipa)与UA的浓度在4.0×10-6~2.0×10-4 mol/L范围内呈良好的线性关系,相关系数为0.9997,检出限为2.0×10-6 mol/L.对0.2 mmol/L UA平行测定10次,相对标准偏差为3.8%,表明该电极重现性和稳定性良好.  相似文献   

20.
将碳纳米管与纳米金结合修饰在金电极上制成修饰电极,并用于柔红霉素(DNR)的电化学行为研究和检测.在4.4 mmol/L磷酸盐缓冲溶液(pH=5.81)中,DNR在碳纳米管-纳米金/Au电极上有一对灵敏的氧化还原峰.还原峰电流与DNR的浓度在3.2×10-8~1.0×10-6mol/L和1.0× 10-6~2.2× 1...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号