首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研制了一种对尼泊金乙酯具有特异性识别性能的分子印迹固相萃取小柱。用本体聚合法制备尼泊金乙酯分子印迹聚合物,通过静态平衡吸附实验及固相萃取实验表征其固相萃取性能,并结合UV法对滴眼液中的尼泊金乙酯进行测定。结果显示,尼泊金乙酯模板聚合物的吸附能力强于空白聚合物;印迹固相萃取柱对尼泊金乙酯标准溶液(0.04mmol/L)一...  相似文献   

2.
水杨酸分子印迹膜电化学传感器的制备   总被引:3,自引:1,他引:2  
以水杨酸为模板分子,采用循环伏安法电聚合形成聚吡咯膜,以固定电位过氧化法去除印迹分子,制备了水杨酸分子印迹膜电极.本印迹电极能促进水杨酸电氧化过程,有效地避免结构类似物(如苯甲酸)对其测定的干扰.循环伏安法用于电化学检测,当富集时间为10 min,磷酸盐缓冲溶液的pH=6.86 时,在1.0×10-6~2.0×10-3 mol/L浓度范围内,水杨酸氧化峰电流与其浓度呈良好的线性关系,检出限为0.8 μmol/L, 用分子印迹膜电极对加标样品进行分析,回收率为94.6%~103.4%.  相似文献   

3.
用巯基乙酸处理金电极表面进行羧基化。采用化学聚合法,用3-氨丙基三乙氧基硅氧烷(APTES)做功能单体,正硅酸乙酯(TEOS)做交联剂,氨水做引发剂,在金电极表面合成土霉素的纳米SiO2分子印迹膜,制备了土霉素电化学传感器。采用铁氰化钾作为离子探针,建立了一种检测土霉素的方法。研究表明:土霉素浓度在3.0×10-7~4.5×10-6 mol/L范围内,铁氰化钾的差分脉冲伏安法的峰电流值随土霉素的浓度增加而线性降低,检出限为3.2×10-8 mol/L。该分子印迹膜克服了高分子膜模板分子不易洗脱,且反复洗脱几次后印迹空穴变形坍塌的缺点,因而可以作为目标分子土霉素理想的分子印迹材料。  相似文献   

4.
以氧乐果为模板分子,邻苯二胺为功能单体,在碳纳米管修饰的玻碳电极表面通过电聚合方法制成氧乐果分子印迹聚合物膜,用无水乙醇洗脱后制备出对氧乐果有特异响应的电化学传感器。通过循环伏安法和电化学阻抗法对分子印迹传感器的电化学性能进行表征。以K_3Fe(CN)_6为探针,采用差分脉冲伏安法研究了该分子印迹传感器的分析性能,建立了氧乐果的间接测定方法。结果表明,K_3Fe(CN)_6的相对峰电流与氧乐果浓度在1.0×10~(-7)~2.0×10~(-6)mol/L范围内呈良好的线性关系,检出限为3.6×10~(-8)mol/L。  相似文献   

5.
基于石墨烯分子印迹电化学传感器测定芦丁   总被引:2,自引:0,他引:2  
将石墨烯(GR)滴涂至裸Au电极表面,并以邻氨基酚为功能单体,芦丁为模板分子,制备了芦丁分子印迹膜电化学传感器,利用循环伏安法(CV)和差分脉冲伏安法(DPV)对制得的传感器进行了电化学性能研究,并且对制备条件和测定条件进行了优化。结果表明,与裸Au电极相比,该GR修饰的Au电极在[Fe(CN)_6]~(3-/4-)溶液中峰电流明显增大,显著提高了芦丁分子印迹传感器的灵敏度。在最优实验条件下,基于GR分子印迹电化学传感器在4.40×10~(-6)~2.80×10~(-4) mol/L范围内呈良好的线性关系,检测限为1.46×10~(-6) mol/L。用该传感器测定了黑茶中芦丁的含量,获得较好结果。  相似文献   

6.
赵路  杜江燕 《应用化学》2012,29(10):1212-1217
采用电化学聚合法合成了对氯霉素(CAP)有快速响应和高灵敏度的聚苯胺/聚吡咯分子印迹复合膜修饰电极。 通过微分脉冲伏安法、扫描电子显微镜对制备的分子印迹复合膜的电化学性质及表面形貌进行了表征。 结果表明,以铁氰化钾为电化学探针,该膜对CAP的测定电化学信号响应快速、灵敏度高、选择性和膜再生性能良好。 对CAP检测的线性范围为5.00×10-8~1.05×10-6 mol/L,检测限为2.09×10-9 mol/L。  相似文献   

7.
刘蓉  龙立平  刘石泉  赵运林  颜徐  李杰 《化学通报》2015,78(10):918-922
以槲皮素作为模板分子,邻氨基苯酚作为功能单体,在金电极表面通过电聚合法,制备了具有选择性识别槲皮素的分子印迹传感器。采用循环伏安法、差分脉冲伏安法研究了印迹膜的性能、结构和分子印迹效应。对功能单体与模板分子的配比、洗脱时间和印迹时间等实验参数进行了优化,并与其结构相似的化合物芦丁的选择性响应进行了比较,发现该传感器对槲皮素分子具有良好的选择性。槲皮素浓度在6.0×10-6~1.0×10-4mol/L范围内与峰电流呈线性关系,线性方程为:I(μA)=27.79+9.48lgc(mol/L)(R=0.9939),检出限为2.0×10-6mol/L。用此传感器测定黑茶中槲皮素含量的结果较为满意。  相似文献   

8.
多壁碳纳米管-分子印迹传感器测定盐酸克伦特罗   总被引:1,自引:0,他引:1  
结合碳纳米材料和分子印迹技术,建立了以K3[Fe(CN)6]为探针测定盐酸克伦特罗的方法。以邻苯二胺为功能单体,盐酸克伦特罗为模板,采用电化学聚合法在多壁碳纳米管修饰电极表面制备了分子印迹薄膜。用乙腈水溶液可快速去除模板,得到多壁碳纳米管-分子印迹传感器。用循环伏安法、交流阻抗法和石英晶体微天平技术对印迹膜进行了表征,膜厚为12.3 nm。K3[Fe(CN)6]的相对峰电流与盐酸克伦特罗的浓度在4.0×10-8~6.6×10-6 mol/L范围内呈线性关系,检测限为8.1×10-9 mol/L。选择性实验表明传感器对结构类似物具有较强的抗干扰能力。此传感器可用于猪肉中盐酸克伦特罗的测定,加标回收率为101.3%~107.9%。  相似文献   

9.
利用分子印迹技术,以马来松香丙烯酸乙二醇酯为交联剂,使用自由基热聚合法在石墨烯修饰的玻碳电极表面合成毒死蜱( CPF)分子印迹聚合膜,制得了CPF分子印迹电化学传感器。采用循环伏安法、线性扫描伏安法和电化学交流阻抗法等,考察了此CPF分子印迹膜的电化学性能。在最佳检测条件下,传感器的峰电流与CPF浓度在2.0×10-7~1.0×10-5mol/L范围内呈线性关系,线性方程为Ip(μA)=-7.1834-0.2424C (μmol/L),相关系数r2=0.9959,检出限为6.7×10-8 mol/L(S/N=3)。构建了CPF分子印迹电化学传感器的动力学吸附模型,测得印迹传感器的印迹因子β=2.59,结合速率常数k=12.2324 s。传感器表现出良好的重现性和稳定性,并成功用于实际水样和蔬菜样品中CPF的测定,加标回收率为94.1%~101.4%。  相似文献   

10.
以甲基丙烯酸为功能单体,呋喃妥因为模板分子,马来松香丙烯酸乙二醇酯(EGMRA)为交联剂,在玻碳电极表面制备了呋喃妥因分子印迹膜。采用循环伏安(CV)法、差分脉冲伏安(DPV)法及交流阻抗(EIS)法对印迹膜进行表征。实验表明,DPV法测定的氧化峰电流与呋喃妥因浓度在8.0×10-8~5.0×10-6 mol/L范围内呈良好的线性关系(R=0.9939),检出限为6.5×10-8 mol/L。该传感器用于呋喃妥因肠溶片的测定,其回收率为96.6%~101.6%。  相似文献   

11.
利用分子印迹技术,以没食子酸为模板分子,甲基丙烯酸为功能单体,采用自由基热聚合的方式制备了分子印迹聚合物,并用于电极的修饰,成功研制了没食子酸分子印迹电化学传感器。以K3[Fe(CN)6]做探针,通过循环伏安法及方波伏安法,考察了该传感器对没食子酸的响应特性,建立了没食子酸的间接电化学分析方法。结果表明,该方法具有较高的选择性和重现性,没食子酸在4.69×10-6~2.14×10-5 mol/L浓度范围内与其氧化峰电流差△Ip呈良好的线性关系,检出限为6.41×10-7 mol/L。将该传感器用于六味地黄丸中没食子酸含量的测定,回收率范围为95.1%~104.8%。  相似文献   

12.
马飞  谭彬  李建平 《分析试验室》2014,(11):1255-1259
制备了同时检测多巴胺(DA)和抗坏血酸(AA)的分子印迹电化学传感器。该传感器以酸性铬蓝K(ACBK)为功能单体,DA/AA为模板分子,利用电化学聚合方法在电极表面合成分子印迹聚合物膜,根据DA和AA产生的氧化电流,利用差分脉冲伏安法实现DA和AA的同时测定,且DA和AA的氧化峰电位分开近300 m V。DA和AA检测限分别达6.20×10-11mol/L和1.65×10-8mol/L。传感器可应用于人尿液中DA和AA的测定。  相似文献   

13.
分子印迹膜电化学传感器检测土壤中莠去津   总被引:2,自引:0,他引:2  
本文报道了一种对莠去津有识别特性的分子印迹膜的制备,即在含和不含模板分子(莠去津)的情况下,通过循环伏安技术在金电极表面沉积2-巯基苯并咪唑,制备了2-巯基苯并咪唑聚合膜.利用循环伏安法对印迹和非印迹膜行为进行了评价,对分子印迹膜的影响因素进行了筛选和优化.实验表明,该分子印迹膜对莠去津具有良好的选择性和灵敏度.莠去津的还原峰电流与莠去津的浓度在 1.2 ×10 - 8mal/L~8.0 ×10 - 5mol/ L 范围内具有良好的线性关系( r=0.99862),检出限可达 3.0 ×10 - 9mol/ L.将此传感器用于土壤中莠去津的测定,回收率在90.8% ~ 98.2%之间,取得了很好的结果.  相似文献   

14.
以速灭威(MTMC)为模板分子,甲基丙烯酸(MAA)为功能单体,马来松香丙烯酸乙二醇酯(EGMRA)为交联剂,在石墨烯掺杂金纳米粒子修饰玻碳电极表面合成分子印迹膜,研制了测定MTMC的分子印迹电化学传感器。采用扫描电镜(SEM)对传感膜的形貌进行了表征,通过循环伏安法(CV)、电化学阻抗谱法(EIS)和差示脉冲伏安法(DPV)对传感器的性能进行了研究。DPV测试表明,MTMC的浓度在1.0×10-7~1.0×10-4mol/L范围内呈现良好的线性关系(线性相关系数为R=0.9936),检出限2.9×10-8mol/L(S/N=3)。传感器应用于蔬菜样品的加标回收检测,回收率在93.4%~106.4%之间。  相似文献   

15.
利用分子印迹传感器选择性测定绿麦隆   总被引:3,自引:0,他引:3  
以绿麦隆为模板分子,邻氨基酚为功能单体,在金电极表面电聚合制得具有特异性识别孔穴的绿麦隆分子印迹膜。采用循环伏安、差分脉冲伏安法研究了印迹膜的性能、结构、分子印迹效应和模板分析物,并比较了传感器对其它结构相似化合物的选择性响应,发现该传感器对绿麦隆检测具有良好的选择性。绿麦隆浓度在3.0×10-7~1.5×10-6mol/L范围内与峰电流呈线性关系,检出限为1.0×10-7mol/L,在干扰物质共存情况下的回收率为105%~116%。  相似文献   

16.
基于Au-Pd合金修饰的玻碳电极为工作电极,采用循环伏安法将邻氨基酚与尼古丁电沉积在工作电极上,制备了尼古丁分子印迹膜传感器。采用差分脉冲伏安法研究尼古丁在尼古丁分子印迹膜传感器上的电化学行为,考察了模板溶解时间、富集时间和溶液pH值对尼古丁测定的影响。在优化实验条件下,尼古丁分子印迹膜传感器的线性范围为1.2×10~(-7)~2.5×10~(-3) mol/L,检出限为4.6×10~(-8) mol/L。用该传感器对吸烟者血液中尼古丁的含量进行检测,结果表明,该传感器具有灵敏度高、线性范围宽、重现性及稳定性好等优点。  相似文献   

17.
以邻苯二胺为功能单体,赛诺吗嗪为印迹分子,采用电化学聚合法在石墨烯修饰的金电极上制备了可快速测定赛诺吗嗪的分子印迹电化学传感器。考察了功能单体的选择、石墨烯修饰金电极、扫描圈数等参数对该传感器性能的影响,利用循环伏安法、差分脉冲伏安法和电化学阻抗法对该传感器进行表征。赛诺吗嗪的线性范围为6.0×10^(-9)~6.0×10^(-4) mol·L^(-1),检出限(3s/k)为1.0×10^(-9) mol·L^(-1)。加标回收率在88.0%~102%之间,测定值的相对标准偏差(n=5)在2.0%~3.5%之间。  相似文献   

18.
该文以四环素为模板分子,4-氨基苯硫酚(4-ATP)为功能单体,采用循环伏安法在金纳米粒子和石墨烯量子点复合材料修饰的玻碳电极表面电聚合分子印迹膜,制备四环素(TC)分子印迹传感器(MIPs/GQDs-AuNPs/GCE),并通过循环伏安法(CV)、电化学交流阻抗法(EIS)和线性扫描伏安法(LSV)等研究了其电化学响应性能。结果表明,该传感器对四环素具有良好的电流响应。在最佳实验条件下,TC氧化峰电流值与其浓度在2.0×10~(-8)~3.0×10~(-5) mol/L范围内呈良好的线性关系,相关系数为0.999 4,检出限为1.5×10~(-9) mol/L,加标回收率为97.9%~106%。该传感器稳定性好、响应灵敏、选择性高,具有良好的应用前景。  相似文献   

19.
以邻苯二胺为功能单体,赛诺吗嗪为印迹分子,采用电化学聚合法在石墨烯修饰的金电极上制备了可快速测定赛诺吗嗪的分子印迹电化学传感器。考察了功能单体的选择、石墨烯修饰金电极、扫描圈数等参数对该传感器性能的影响,利用循环伏安法、差分脉冲伏安法和电化学阻抗法对该传感器进行表征。赛诺吗嗪的线性范围为6.0×10~(-9)~6.0×10~(-4) mol·L~(-1),检出限(3s/k)为1.0×10~(-9) mol·L~(-1)。加标回收率在88.0%~102%之间,测定值的相对标准偏差(n=5)在2.0%~3.5%之间。  相似文献   

20.
利用原位聚合分子印迹技术,以3-氨基苯硼酸(3-ABBA)为功能单体,利巴韦林(RIB)为目标分子,以硼酸和顺式二醇在不同酸碱度条件下可逆形成环内酯键为原理,在玻碳电极表面原位聚合形成利巴韦林分子印迹膜,研制了测定利巴韦林的分子印迹电化学传感器。采用循环伏安法(CV)和差分脉冲法(DPV)对印迹膜性能进行研究。DPV测试表明:在最优实验条件下,利巴韦林的浓度在5.0×10~(-8)~1.0×10~(-5)mol/L范围内与峰电流呈良好的线性关系,相关系数(r~2)为0.995 3,检出限(S/N=3)为1.5×10~(-8)mol/L。特异性实验表明制备的传感器对利巴韦林的选择性良好。该分子印迹电化学传感器可用于食品中利巴韦林的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号