共查询到20条相似文献,搜索用时 15 毫秒
1.
作为电化学生物传感器中最重要的研究内容之一,葡萄糖生物传感器在数十年的发展中取得了巨大进展。本文综述了近年来利用纳米技术设计的新型电化学葡萄糖传感器的主要研究进展,并从纳米材料维度分类进行了讨论。其中,零维纳米材料主要讨论了包括金纳米颗粒、银纳米颗粒以及铜、铂等金属纳米颗粒材料; 一维纳米材料主要讨论了通过模板法制备的金属或金属氧化物纳米线以及单臂或者多壁纳米管材料; 二维纳米材料主要总结了以碳为基础的石墨烯材料和一些片状的金属材料。纳米材料对电化学葡萄糖传感器的影响主要集中在生物相容性、增强检测灵敏度、酶的固定等方面。此外,本文也对电化学葡萄糖传感器的今后发展做了展望。 相似文献
3.
修饰材料和酶在电极表面上的固定是目前制约葡萄糖生物传感器广泛应用的主要因素. 交替电沉积石墨烯和纳米金在玻碳电极表面以构建石墨烯/金复合材料. 电极放入2,5-二(2-噻吩)-1-对苯甲酸吡咯溶液(DPB)进行电聚合形成含有大量游离羧基的导电高分子膜. 以1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺和N-羟基琥珀酰亚胺的混合溶液为活化剂将葡萄糖氧化酶共价键合于电极表面制备生物传感器. 采用拉曼光谱、X-射线衍射和扫描电镜对石墨烯/金复合材料的形貌和结构分析揭示交替电沉积得到了分散性良好的石墨烯/金复合材料. 此外, 修饰电极的电化学性质也被详细研究. 它的电活性面积、载酶量和表观米氏常数分别为0.1403 cm2、7.73×10-11 mol·cm-2和5.23×10-5 mol·L-1. 当葡萄糖浓度在5×10-6~5×10-4 mol·L-1之间, 传感器的差分脉冲伏安峰电流变化符合线性关系. 方法的检出限为1.7×10-6 mol·L-1. 传感器在4 ℃下放置四周后其电化学响应仍能保持95%以上. 由于石墨烯/金复合材料的电催化作用和导电高分子对酶的共价固定, 方法在灵敏度、选择性、稳定性和重现性方面优于文献报道的萄葡糖生物传感器, 它成功用于血清中微量葡萄糖的测定. 相似文献
4.
利用自组装法将巯基修饰的DNA探针与6-巯基-1-己醇(MCH)固定到金电极表面,制备了微囊藻属特定DNA传感器,将该传感器与完全互补的微囊藻DNA序列、完全不互补序列,以及单碱基错配序列进行杂交,以Hoechst 33258为杂交指示剂,应用循环伏安法和线性扫描伏安法研究了该传感器对目标DNA的电化学检测行为.研究表明,当与完全互补DNA杂交后,Hoechst 33258氧化信号有明显的增强.实验对自组装时间、MCH浸泡时间及杂交液离子浓度进行了优化.结果表明,当自组装时间为90 min,MCH浸泡时间为1 h,杂交溶液中NaCl浓度为0.3 mol/L时,电化学信号最好.目标DNA的氧化峰电流值与其浓度在1×10~(-8) ~1×10~(-6) mol/L范围内呈良好的线性关系,检出限为8.1×10~(-9) mol/L. 相似文献
5.
通过将葡萄糖氧化酶固载于壳聚糖-纳米金复合膜内所构置的传感器,实现了葡萄糖氧化酶的直接电化学,并采用循环伏安法与电化学阻抗法对修饰电极进行了表征。研究表明:在除氧缓冲溶液中,葡萄糖氧化酶-壳聚糖-纳米金复合膜修饰电极表现出一对良好的氧化还原峰,这对峰归因于葡萄糖氧化酶的氧化还原,证明葡萄糖氧化酶被成功固载于复合膜内。电子传递速率常数为15.6 s-1,说明葡萄糖氧化酶的电活性中心与电极之间的电子传递很快。将壳聚糖与纳米金相结合还提高了葡萄糖氧化酶在复合膜内的稳定性并保持其生物活性,并可以用于葡萄糖检测。计算得到其表观米氏常数为10.1 mmol·L-1。而且,该生物传感器可以用于血样中葡萄糖含量的测定。 相似文献
6.
采用溶液相牺牲模板法制备中空多孔金纳米粒子(HPAuNPs),并将该材料与还原氧化石墨烯(rGO)复合,用于葡萄糖氧化酶(GOx)在玻碳电极(GCE)表面的有效固定,构建GOx/HPAuNPs/rGO/GCE传感界面。利用扫描和透射电镜、X射线光电子能谱、X射线衍射谱、红外光谱及电化学等方法对材料的形貌与结构,GOx的固定化过程,以及传感器的直接电化学和电催化性能进行表征。结果表明,HPAuNPs和rGO的协同作用能有效促进GOx与电极之间的直接电子转移(DET)。基于GOx/HPAuNPs/rGO/GCE对葡萄糖的良好电催化性能,该方法有效实现了对葡萄糖的高灵敏度检测,其电流响应的线性范围为0.05~7.0 mmol/L,检出限(S/N=3)为16μmol/L。该传感器具有良好的选择性、重现性及稳定性,对实际样品血清中血糖的测定结果令人满意,回收率为98.0%~103%,相对标准偏差不大于5.0%。 相似文献
7.
8.
制备了ITO/Gr/CH_3NH_3PbI_3/CS/GOx电极,将制得的电极浸入5.0mL的0.1mol·L~(-1) PBS(pH 7.0)中,加入丁草胺标准溶液,保持10min,然后将电极取出插入含有0.8mmol·L~(-1)葡萄糖的0.1mol·L~(-1) PBS(pH 7.0)中,测量光电流(I)。另做空白试验(操作同上,但不存在丁草胺),测量光电流(I_0)。由(I_0-I)/I_0×100计算丁草胺对光电流的抑制率。结果表明,抑制率与丁草胺的浓度在0.02~10.0nmol·L~(-1)内呈线性关系,检出限(3S/N)为0.005nmol·L~(-1)。方法用于测定蔬菜和水果空白加标样品中的丁草胺,测定值与气相色谱-质谱法的测定结果一致,测定值的相对标准偏差(n=6)在1.8%~4.7%之间,加标回收率在93.3%~102%之间。 相似文献
9.
葡萄糖氧化酶在石墨烯-纳米氧化锌修饰玻碳电极上的直接电化学及对葡萄糖的生物传感 总被引:1,自引:0,他引:1
采用滴涂法和电沉积法制备了石墨烯/纳米氧化锌复合膜修饰玻碳电极,再将葡萄糖氧化酶固定在修饰电极表面制成了电化学生物传感器,用于葡萄糖的灵敏测定。用循环伏安法在-0.7~-0.1 V范围内研究了葡萄糖氧化酶在修饰电极上的直接电化学行为。结果表明,石墨烯/纳米氧化锌复合膜能很好地保持葡萄糖氧化酶的生物活性,并显著促进了其电化学过程。在0.1 mol/L磷酸盐缓冲溶液(pH 7.0)中,固定在修饰电极上的葡萄糖氧化酶呈现出一对近乎可逆的氧化还原峰,并且对葡萄糖的氧化具有良好的催化作用。葡萄糖氧化酶在修饰电极上的电子转移常数ks为1.42 s-1,修饰电极对葡萄糖催化的米氏常数Kampp为14.2μmol/L。线性范围为2.5×10-6~1.5×10-3mol/L,检出限为2.4×10-7mol/L(S/N=3)。此修饰电极具有良好的导电性能、稳定性和重现性,可用于实际样品的分析测定。 相似文献
10.
基于金纳米棒-壳聚糖复合膜的葡萄糖生物传感器 总被引:3,自引:0,他引:3
本文采用金纳米棒-壳聚糖复合膜固定葡萄糖氧化酶构建电流型葡萄糖生物传感器.通过电化学交流阻抗法和循环伏安法对酶膜状态进行了表征,得到了相应的等效电路和动力学参数.实验结果表明,金纳米棒-壳聚糖复合膜可以辅助电子传递,提高电极的电流响应,并使生物传感器的使用温度范围有很大的扩展.此传感器表现出对葡萄糖溶液浓度的优良响应,线性范围在2.78×10-5mol/L—2.22×10-3mol/L,响应灵敏度约为7.819μA·cm-2(mmol/L)-1,表观米氏常数为10mmol/L.本工作还研究了温度和溶液pH值对电极电流响应的影响. 相似文献
11.
葡萄糖传感器在几十年的发展中取得了重大进展,经历了三代基于酶葡萄糖传感器之后,现已进入第四代无酶葡萄糖传感器的发展阶段.本文从基于酶和无酶两类介绍了不同葡萄糖传感器的测试原理,综述了近年来纳米材料在无酶电化学葡萄糖传感器方面应用的主要研究进展,对不同类别纳米材料的制备方法以及所构建传感器的灵敏度、选择性、检测范围和稳定性等进行了评述,分析了制约无酶葡萄糖传感器商业化应用的主要原因.其中,贵金属纳米材料主要讨论了铂、金和钯;过渡金属纳米材料主要讨论了镍、铜以及其氧化物;双金属纳米材料主要讨论了合金和复合物;碳纳米材料主要讨论了单壁(多壁)碳纳米管和石墨烯.此外,本文也对无酶葡萄糖传感器的发展方向和趋势进行了展望. 相似文献
12.
将葡萄糖氧化酶1mg,纳米金及碳纳米管的复合材料2mg,无水乙醇1mL和10μL全氟磺酸用超声方法分散均匀后滴涂于玻碳电极表面,制成新颖的葡萄糖生化传感器(记作Nano-Au/CNT′s/GOD/GCE)。在含0.2mol·L~(-1)磷酸盐缓冲溶液及5.5×10~(-5)mol·L~(-1)鲁米诺存在的溶液中,用此生化传感器作工作电极,测得葡萄糖浓度在8.0×10~(-7)~5.0×10~(-4)mol·L~(-1)范围内与鲁米诺反应产生的化学发光强度呈线性关系,其检出限(3S/N)为8.0×10~(-8)mol·L~(-1)。同一支传感器连续5次测定,所得测定值的相对标准偏差为4.8%。将此传感器置于pH7.8磷酸盐缓冲溶液中,在4℃条件下保存2周后,在相同体系中进行测定时,其发光强度降低7.2%。 相似文献
13.
14.
对DNA电化学传感器的设计和应用进行了综述。介绍了其基本原理、探针固定技术、杂交指示剂的选择及其在基因诊断、药物分析、环境监测等方面的应用,对发展方向作了概括。 相似文献
15.
16.
酶直接电化学与第三代生物传感器 总被引:10,自引:0,他引:10
本文详细地评述并展望了酶直接电化学与第三代生物传感器这个领域已取得的成果,主要内容涉及生物电催化的三个发展阶段,实现酶与电极之间的直接电子转移方法和相应机理、以及第三代酶传感器的研制。 相似文献
17.
聚吡咯葡萄糖氧化酶电极的生物电化学响应 总被引:2,自引:0,他引:2
采用分步骤合过程,制备了以聚吡咯膜为载体的葡萄糖氧化酶电极,探讨了其生物电化学响应特性,计算了酶催化反应的有关动力学参数。与溶解态酶相比,该电极表现出良好的生物电化学特征,而且酶蛋白对溶液温度的稳定性有显著提高。 相似文献
18.
19.
20.
将纳米金胶(AuNPs)和羟基磷灰石(HAp)按一定比例混合制备了新型复合膜用于葡萄糖氧化酶(GOD)的固定,构建了高灵敏的葡萄糖传感器。由于纳米金胶的存在,葡萄糖氧化酶的直接电化学性质得以增强,在去除氧气的PBS(pH 7.0)介质中,固定在复合膜内的GOD表现出一对良好的氧化还原峰。在饱和氧气条件下,当加入一定量的葡萄糖时,由于GOD催化葡萄糖氧化消耗溶液中的溶解氧,-0.8 V处溶解氧的还原峰电流降低,且峰电流降低的量与葡萄糖浓度在0.02~1.62 mmol/L范围内呈线性相关,检出限为5.0μmol/L,检测灵敏度达9.91 mA.mol-1.L,可实现对葡萄糖的快速检测。 相似文献