首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of peripheral blood mononuclear cells to incorporate 3[H] thymidine into nuclear DNA following stimulation by phytohemagglutinin is reduced by prior exposure to UV radiation in vitro : the reduction is dose and wavelength dependent. The doses required to affect this function of mononuclear cells are higher than the doses required to reduce trypan blue dye exclusion, so that following exposure to radiation populations of cells that are unable to exclude trypan blue dye are still capable of responding to phytohemagglutinin. This finding indicates that trypan blue dye exclusion may not accurately reflect the viability of cells after exposure to UV radiation.  相似文献   

2.
Nanomaterials, with dimensions in the 1-100 nm range, possess numerous potential benefits to society. However, there is little characterization of their effects on biological systems, either within the environment or on human health. The present study examines cellular interaction of aluminum oxide and aluminum nanomaterials, including their effect on cell viability and cell phagocytosis, with reference to particle size and the particle's chemical composition. Experiments were performed to characterize initial in vitro cellular effects of rat alveolar macrophages (NR8383) after exposure to aluminum oxide nanoparticles (Al2O3-NP at 30 and 40 nm) and aluminum metal nanoparticles containing a 2-3 nm oxide coat (Al-NP at 50, 80, and 120 nm). Characterization of the nanomaterials, both as received and in situ, was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and/or CytoViva150 Ultra Resolution Imaging (URI)). Particles showed significant agglomeration in cell exposure media using DLS and the URI as compared to primary particle size in TEM. Cell viability assay results indicate a marginal effect on macrophage viability after exposure to Al2O3-NP at doses of 100 microg/mL for 24 h continuous exposure. Al-NP produced significantly reduced viability after 24 h of continuous exposure with doses from 100 to 250 microg/mL. Cell phagocytotic ability was significantly hindered by exposure to 50, 80, or 120 nm Al-NP at 25 microg/mL for 24 h, but the same concentration (25 microg/mL) had no significant effect on the cellular viability. However, no significant effect on phagocytosis was observed with Al2O3-NP. In summary, these results show that Al-NP exhibit greater toxicity and more significantly diminish the phagocytotic ability of macrophages after 24 h of exposure when compared to Al2O3-NP.  相似文献   

3.
SENSITIVITY OF MONONUCLEAR CELLS TO UV RADIATION   总被引:2,自引:0,他引:2  
Abstract—The viability of peripheral blood mononuclear cells, as measured by trypan blue dye exclusion, is decreased by exposure to UV radiation in vitro . The toxicity of the UV radiation is doseand wavelength-dependent; UVC is approximately 10 times more effective than UVB and 105 times more effective than UVA.  相似文献   

4.
Abstract— The proportion and composition of the human cutaneous CD3+ T lymphocyte population was determined in situ following a single exposure to physiological, erythema-inducing doses of simulated solar radiation, mainly consisting of UV radiation. Biopsies were taken 1, 2 and 7 days after local irradiation of normal volunteers with 1,2 and 4 MED by a xenonarc lamp and immunohistochemistry was performed on cryostat sections. Ultraviolet radiation caused an initial decrease of intraepidermal CD3+ T-cell numbers or even could lead to T-cell depletion 24 and 48 h postirradiation, and this was followed by an infiltration of T cells in the epidermis as determined 1 week after UV exposure. The number of dermal CD3+ T ceDs was increased 24 h after irradiation, reached a maximum at 48 h and subsequently declined at day 7, though remained significantly higher than the unirradiated control Double staining demonstrated that the CD3+ T cells, which immigrated into the (epi)dermis upon UV exposure, coexpressed CD4 but not CD8. Therefore the CD4/CD8 ratio in skin was markedly increased during the first week upon UV exposure. Our time course study shows that UV radiation affects die T-cell population within human skin by depleting the majority of epidermal T cells and initiating a selective influx of CD4+ T cells.  相似文献   

5.
Melanocytes play a central role in the response of skin to sunlight exposure. They are directly involved in UV-induced pigmentation as a defense mechanism. However, their alteration can lead to melanoma, a process where the role of sun overexposure is highly probable. The transformation process whereby UV damage may result in melanoma initiation is poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, where melanin can act either as a sunscreen or as a photosensitizer. The aim of this study was to analyze the behavior of melanocytes from fair skin under irradiation mimicking environmental sunlight in terms of spectral power distribution. To do this, normal human Caucasian melanocytes in culture were exposed to simulated solar UV (SSUV, 300-400 nm). Even at relatively high doses (until 20 min exposure, corresponding to 12 kJ/m2 UV-B and 110 kJ/m2 UV-A), cell death was limited, as shown by cell viability and low occurrence of apoptosis (caspase-3 activation). Moreover, p53 accumulation was three times lower in melanocytes than in unpigmented cells such as fibroblasts after SSUV exposure. However, an important fraction of melanocyte population was arrested in G2-M phase, and this correlated well with a high induction level of the gene GADD45, 4 h after exposure. Among the genes involved in DNA repair, gene XPC was the most inducible because its expression increased more than two-fold 15 h after a 20 min exposure, whereas expression of P48 was only slightly increased. In addition, an early induction of Heme Oxygenase 1 (HO1) gene, a typical response to oxidative stress, was also observed for the first time in melanocytes. Interestingly, this induction remained significant when melanocytes were exposed to UV-A radiation only (320-400 nm), and stimulation of melanogenesis before irradiation further increased HO1 induction. These results were obtained with normal human cells after exposure to SSUV radiation, which mimicked natural sunlight. They provide new data related to gene expression and suggest that melanin in light skin could contribute to sunlight-induced genotoxicity and maybe to melanocyte transformation.  相似文献   

6.
The effects of ultraviolet radiation (UV-A: 320-400 nm and UV-B: 280-320 nm) and methyl viologen (MV) single or combined exposure, on the cell growth, viability and morphology of two strains of the unicellular flagellate Euglena gracilis, using the Z strain as a plant model and the achlorophyllous mutant SMZ strain as an animal model were investigated. Cell growth was not affected by MV only, whereas UV-A or UV-B single and combined exposure with MV inhibited the cell growth or decreased the viability. The SMZ strain had a higher number of abnormal cells than the Z strain after the third dose of UV-B was delivered simultaneously with MV. The abnormal cell number decreased when E. gracilis SMZ cells were preincubated with 100 microM rutin prior to the UV-B and MV exposure. There were higher abnormal cell numbers with groups exposed to UV rather than MV single exposure. Combined exposure to UV-B and 200 microM MV induced the highest levels of TBARS in both strains, and with the supplementation of rutin these high levels were suppressed. These results suggest that UV-A or UV-B irradiation alone or combined with MV cause considerable oxidative damage in E. gracilis cells, and rutin supplementation may suppress their adverse effects.  相似文献   

7.
Groups of mice were exposed to a single dose of UV radiation before or after immunization with Candida albicans. The delayed type hypersensitivity (DTH) response was markedly depressed in all UV-irradiated groups. Exposure of mice to UV radiation before sensitization induced splenic suppressor cells that, upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, exposure of mice to UV radiation after sensitization interfered with elicitation of the DTH response, but this suppression was not transferable. These studies demonstrate that immunity to Candida albicans in mice is impaired by exposure to UV radiation and that two separate mechanisms may be involved.  相似文献   

8.
UV radiation suppresses the immune response, and UV-induced immune suppression contributes to UV-induced photocarcinogenesis. For UV-induced immune suppression to occur, electromagnetic energy (i.e. UV radiation) must be converted to a biological signal. Two photoreceptors have been identified in the skin that serves this purpose, epidermal DNA and trans-urocanic acid (UCA). Although compelling evidence exists to support a role for each pathway (UV-induced DNA damage or photoisomerization of UCA) in UV-induced immune suppression, it is not clear what determines which photoreceptor pathway is activated. To address this question, we injected UV-irradiated mice with a monoclonal antibody with specificity for cis-UCA or applied liposomes containing DNA repair enzymes to the skin of UV-irradiated mice. The effect that each had on UV-induced suppression of delayed-type hypersensitivity was measured. We asked whether the light source used (FS-40 sunlamps vs solar-simulated UV radiation) altered whichever pathway of immune suppression was activated. Different doses of UV radiation and the viability of the antigen were also considered. Neither the dose of UV nor the light source had any influence on determining which pathway was activated. Rather, we found that the viability of the antigen was the critical determinant. When live antigens were used, UV-induced immune suppression was blocked with monoclonal anti-cis-UCA but not with T4 endonuclease V-containing liposomes. The reverse was observed when formalin-fixed or killed antigens were used. Our findings indicate that antigen viability dictates which photoreceptor pathway predominates after UV exposure.  相似文献   

9.
It is well known that UV exposure of human skin induces DNA damage, and the cumulative effect of such repeated damage is an important contributor to the development of skin cancer. Here, we demonstrate UV dose- and time-dependent induction of DNA damage in the form of cyclobutane pyrimidine dimers (CPD) in skin cells following a single exposure of human skin to UV radiation. CPD+ cells were identified by an immunohistochemical technique using monoclonal antibodies to thymine dimers. The percentage of CPD+ cells was UV dose-dependent, even a suberythemal (0.5 minimal erythemal dose [MED]) dose resulted in detectable level of cells that contained pyrimidine dimers. Forty-eight hours after irradiation the percent of total epidermal cells positive for CPD ranged from 19 +/- 8, 36 +/- 10, 57 +/- 12 and 80 +/- 10, and total percent dermal cells positive for CPD ranged from 1 +/- 1, 7 +/- 3, 16 +/- 3 and 20 +/- 5, respectively, following 0.5, 1.0, 2.0 and 4.0 MED. CPD were also observed in deeper reticular dermis, which suggest the penetrating ability of UV radiation into the skin. The change in CPD+ cells from 0.5 to 240 h post-UV exposure in both epidermal and dermal compartments of the skin was also quantitated. CPD+ cells were observed in skin biopsies at early time points after UV exposure which remained elevated for 48 h, then declined significantly by 3 days post-UV. A close examination of the skin at and after 3 days following UV exposure indicates the significant removal of DNA damaged cells from the epidermis. Ten days after UV exposure the levels of CPD+ cells in both epidermis and dermis were not significantly different from that in unirradiated skin.  相似文献   

10.
Fluoroquinolone (FLQ) drugs are a potent family of antibiotics used to treat infections including ocular infections. To determine if these antibiotics may be phototoxic to the eye, we exposed human lens epithelial cells to 0.125–1 mm FLQs (ciprofloxacin [Cipro], lomefloxacin [Lome], norfloxacin [Nor] and ofloxacin [Ofl]), the precursor quinolone nalidixic acid (Nalid) and UVA radiation (2.5 J cm−2). Based on fluorescence confocal microscopy, FLQs are diffused throughout the cytoplasm and preferentially located in the lysosomes of lens epithelial cells. Neither FLQ exposure alone nor UVA exposure alone reduced cell viability. However, with exposure to UVA radiation the FLQs studied (Cipro, Nor, Lome and Ofl) induced a phototoxic reaction that included necrosis, apoptosis, loss of cell viability as measured by MTS, and membrane damage as determined by the lactate dehydrogenase assay. Both Nalid and all FLQs studied (Cipro, Nor, Lome and Ofl) photopolymerized the lens protein α-crystallin. Phototoxic damage to lens epithelial cells and/or α-crystallin will lead to a loss of transparency of the human lens. However, if precautions are taken to filter all UV radiation from the eye while taking these antibiotics, eye damage may be prevented.  相似文献   

11.
The photoprotector role of pigment dispersion in the melanophores of the crab, Chasmagnathus granulata, against DNA and oxidative damages caused by UV-A and UV-B was investigated. Intact and eyestalkless crabs were used. In eyestalkless crabs, the dorsal epidermis of the cephalothorax (dispersed melanophores) and the epidermis of pereiopods (aggregated melanophores) were analyzed. Intact crabs showed only dispersed melanophores in the two epidermis. Antioxidant enzymes activity and lipoperoxidation content were analyzed after UV-A (2.5 J/cm2) or UV-B (8.6 J/cm2) irradiation. DNA damage was analyzed by single cell electrophoresis (comet) assay, after exposure to UV-B (8.6 J/cm2). UV-A radiation increased the glutatione-S-transferase activity in the pereiopods epidermis of eyestalkless crabs (P<0.05). UV-B radiation induced DNA damage in the dorsal epidermis of eyestalkless crabs (P<0.05). In pereiopod epidermis of eyestalkless crabs, there was no significant difference between control and UV-B-exposed crabs. In the pereiopods epidermis of eyestalkless, the control group showed higher scores of DNA damage and approximately 50% of cellular viability. Because in eyestalkless and irradiated crabs the cellular viability was approximately 5%, it was not possible to observe nuclei for determination of DNA damage. The findings show that melanophores can play a role in the defense against harmful effects of a momentary exposure to UV radiation.  相似文献   

12.
Melanins are ubiquitous catecholic pigments, formed in organelles called melanosomes within melanocytes, the function of which is to protect skin against harmful effects of UV radiation. Melanosomes within melanoma cells are characteristically abnormal, with fragmented melanin and disrupted membranes. We hypothesize that the disruption of melanosomal melanin might be an early event in the etiology and progression of melanoma, leading to increased oxidative stress and mutation. In this report, we examine the effect of a combination of UV treatment and metal ion exposure on melanosomes within melanocytes, as well as their ability to act as pro-oxidants in ex situ experiments, and assay the effects of this treatment on viability and cell cycle progression. UVB exposure causes morphologic changes of the cells and bleaching of melanosomes in normal melanocytes, both significantly enhanced in Cu(II) and Cd(II)-treated cells, as observed by microscopy. The promoted bleaching by Cu(II) is due to its ability to redox cycle under oxidative conditions, generating reactive oxygen species; verified by the observed enhancement of hydroxyl radical generation when isolated melanosomes were treated with both Cu(II) ions and UVB, as assayed by DNA clipping. Single-dose UVB/Cu treatment does not greatly affect cell viability or cell cycle progression in heavily pigmented cells, but did so in an amelanotic early stage melanoma cell line.  相似文献   

13.
Abstract— Ultraviolet-B (290–320 nm) radiation is known to impair the antigen-presenting cell (APC) function of Langerhans cells (LC), skin-specific members of the dendritic cell (DC) family. We sought to address mechanisms of this effect, focusing on the role played by hydrogen peroxide. For this purpose, we used a newly established murine DC line, XS52, which resembles epidermal LC in several respects. The APC capacity of XS52 cells, using two different CD4* T cell clones as responders, was inhibited significantly (>50%) by exposure to UV radiation (unfiltered FS20 sunlamps) at relatively small fluences (50–100 J/m2). Ultraviolet radiation also inhibited growth factor-dependent proliferation of XS52 cells. On the other hand, cell surface phenotype was relatively well preserved after irradiation; expression levels of B7-1 and B7-2 were reduced slightly, while other molecules ( e.g. Ia, CD54, CD1 la and CD18) were not affected. With respect to the role played by hydrogen peroxide, pretreatment with purified catalase (900 U/mL) prevented UV-induced inhibition of APC function. Short-term exposure to 3 miM H202 or f-butyl H202 mimicked UV radiation by inhibiting APC function. Finally, intrinsic catalase activity was substantially lower in XS52 cells compared with Pam 212 keratinocytes. These results indicate that the generation of hydrogen peroxide alone is sufficient to produce some, but not all, of the deleterious effects of UV radiation on DC derived from the skin.  相似文献   

14.
Abstract— The carcinogenic and melanogenic effects of a filtered metal halide source (UVASUN) that emits UV radiation in a range from 340 to 400 nm and a bank of Philips TL 09R tubes (TL 09) emitting in a range from 310 to 400 nm were studied in lightly pigmented hairless hr/hr C3H/Tif mice. Both the carcinogenic effect of the two UVA radiation sources alone and in combination with a UV source, consisting of one Philips TL 12 and five Bellarium-S SA-1–12 tubes emitting radiation somewhat similar to the UV part of the solar spectrum (SOLAR UV), were investigated. Finally, the melanogenic effect of exposure to the two UVA sources were studied. The mice were exposed to the UVA sources 30 min/ day, 5 days/week, in equal erythemogenic doses, calculated by using the Commission Internationale de 1'Eclairage human erythema action spectrum. Equal erythemogenic doses of TL 09 and UVASUN induced the same degree of skin pigmentation, but skin tumor development was enhanced in mice exposed to TL 09 compared with UVASUN ( P < 0.0005). For all but one tumor, endpoint pretreatment with TL 09 or UVASUN for 91 days did not influence tumor development during subsequent exposure to SOLAR UV radiation 10 min/day, 4 days/week. Exposure to the two UVA radiation sources after 91 days of SOLAR UV exposure significantly enhanced skin tumor development. Overall, the data on the interaction between exposure to the UVA sources and SOLAR UV indicated that the risk of SOLAR UV-induced carcinogenesis was independent of the type of prior-UVA exposure and post-UVA exposure.  相似文献   

15.
It is well known that ultraviolet (UV) radiation induces erythema, immunosuppression and carcinogenesis. We hypothesized that chronic exposure to solar UV radiation induces adaptation that eventually prevents the suppression of acquired immunity. We studied adaptation for UV-induced immunosuppression after chronic exposure of mice to a suberythemal dose of solar simulated radiation (SSR) with Cleo Natural lamps, and subsequent exposure to an immunosuppressive dose of solar or UVB radiation (TL12). After UV dosing, the mice were sensitized and challenged with either diphenylcyclopropenone (DPCP) or picryl chloride (PCl). To assess the adaptation induced by solar simulated radiation, we measured the proliferative response and cytokine production of skin-draining lymph node cells after immunization to DPCP, the contact hypersensitivity (CHS) response to PCl, and thymine-thymine (T-T) cyclobutane dimers in the skin of mice. After induction of immunosuppression by SSR or by TL12 lamps, the proliferative response of draining lymph node cells after challenge with DPCP, or the CHS after challenge with PCl, showed significant suppression of the immune response. Chronic irradiation from SSR preceding the immunosuppressive dose of UV failed to restore the suppressed immune response. Reduced lipopolysaccharide-triggered cytokine production (of IL-12p40, IFN-gamma, IL-6 and TNF-alpha) by draining lymph node cells of mice sensitized and challenged with DPCP indicated that no adaptation is induced. In addition, the mice were not protected from T-T dimer DNA damage after chronic solar irradiation. Our studies reveal no evidence that chronic exposure to low doses of SSR induces adaptation to UV-induced suppression of acquired immunity.  相似文献   

16.
17.
UVR exposure is known to cause developmental defects in a variety of organisms including aquatic species but little is known about the underlying molecular mechanisms. In this work we used zebrafish (Danio rerio) embryos as a model system to characterize the UVR effects on fish species. Larval viability was measured for embryos exposed to several UVR spectral treatments by using a solar simulator lamp and an array of UV cutoff filters under controlled conditions in the laboratory. Survival rate and occurrence of development abnormalities, mainly caudal (posterior) notochord bending/torsion, were seriously affected in UV-exposed larvae reaching values of 53% and 72%, respectively, compared with non-UV-exposed larvae after 6 days postfertilization (dpf). In order to elucidate the molecular mechanisms involved, a matricellular glycoprotein named osteonectin and the expression of a DNA-repair related gene, p53, were studied in relation to UVR exposure. The results indicate that osteonectin and p53 expression were increased under UVR exposure due to wavelengths shorter than 335 nm (i.e. mainly UVB) and 350 nm (i.e. short UVA and UVB), respectively. Furthermore, parallel experiments with microinjections of osteonectin-capped RNA showed that malformations induced by osteonectin overexpression were similar to those observed after a UVR exposure. Consequently this study shows a potential role of osteonectin in morphological deformities induced by solar UV radiation in zebrafish embryos.  相似文献   

18.
3D bioprinting often involves human mesenchymal stem cells (hMSC) that are differentiated into the desired cells to replace body parts like ears. Scaffolds of crosslinked hydrogels offer structural support during differentiation. Different photoinitiators are used to make free radicals that photocrosslink these hydrogels; the more penetrating ultraviolet A1 (UVA1) (340–400 nm) wavelengths can be used because Irgacure 2959 only absorbs in the UV (100–400 nm) region. We questioned if the L929 mouse fibroblast cells used in the American Society for Testing Materials standard cytotoxicity assays (F895&F813) can predict the viability of hMSC after exposure to UVA1 radiation alone and in combination with Irgacure 2959 (0.05–0.5% w/v usual range). We exposed both cell types to a high dose of LED UVA1 (370 ± 5 nm; 788 kJ m?2) and side by side to increasing UVA1 doses from a glass‐filtered black light source combined with either 0.05% (w/v) or 0.5% (w/v) of Irgacure 2959 and monitored their viabilities using flow cytometry. We found UVA1 radiation alone killed ~50% of the hMSC cells compared to ~8% of the L929 cells and significantly more hMSC than L929 died after UVA1 with Irgacure 2959. Thus, L929 cannot be used to accurately predict the viability of hMSC after these specific 3D bioprinting conditions.  相似文献   

19.
Abstract. 4'-Aminoethyl-4,5',8-trimethylpsoralen, a DNA photoreagent, was used in conjunction with near UV light to modify cell growth and morphology. Since near UV radiation is needed to trigger the photoreactions, various doses of classical and laser near UV light were exposed to cells growing in media containing psoralen. It was found that near UV light caused a reduction in cell viability as indicated by complete inhibition of growth. The specificity of psoralens for nucleic acids was also investigated by using a tritium labeled psoralen derivative and tracing its appearance in different fractions of DNA from treated and untreated cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号