首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
用共沉淀法制备了纳米Ru-Zn催化剂,考察了阿拉伯树胶修饰对苯选择加氢制环己烯催化剂性能的影响,并用X射线衍射(XRD)、透射电镜(TEM)、N_2-物理吸附、X射线光电能谱(XPS)和X射线荧光光谱(XRF)等手段对催化剂进行了表征。结果表明,阿拉伯树胶的用量可以调变Ru-Zn催化剂的粒径。最高环己烯收率随粒径的增大呈火山型变化趋势。当阿拉伯树胶与RuCl_3·x H_2O的质量比为0.033时,Ru-Zn催化剂的最佳粒径为4.0 nm,最高环己烯收率达59.6%。且该催化剂具有良好的重复使用性能。  相似文献   

2.
采用共沉淀法制备了水溶性聚合物修饰的苯选择加氢制环己烯Ru-Zn催化剂, 并用X射线衍射、 透射电镜、 X射线能量色散谱、 X射线光电子能谱和氮气物理吸附等对加氢后催化剂进行了表征. 结果表明, 水溶性聚合物的种类和聚乙二醇-20000(PEG-20000)的用量对Ru-Zn催化剂微晶尺寸有显著影响. 在ZnSO4存在下, 随着Ru-Zn催化剂Ru微晶尺寸增加, 苯转化率降低, 环己烯最高收率则呈火山型变化趋势. 用0.4 g PEG-20000修饰的Ru-Zn催化剂[m(PEG-20000)∶m(Ru)=0.2]Ru的微晶尺寸为4.8 nm, 环己烯最高收率为62.2%. Ru微晶尺寸影响催化剂表面的Zn/Ru原子比, 进而影响Ru-Zn催化剂性能.  相似文献   

3.
苯选择加氢制环己烯Ru-Co-B/ZrO2催化剂的研究   总被引:2,自引:0,他引:2  
对苯选择加氢制环己烯催化剂的研究,关键是选择性,这方面已经有不少文献报道[1,2],但具有工业应用价值的甚少。此外,载体也是影响环己烯选择性的一个重要因素。本文用化学还原法制备了Ru Co B/ZrO2催化剂,研究了助剂Co和载体ZrO2含量及还原剂对苯选择加氢制环己烯催化性能的影响。1 实验部分1 1 催化剂制备分别用KBH4和甲醛作还原剂,采用化学还原法制备出Ru Co B/ZrO2和Ru Co/ZrO2催化剂。其中RuCl3·xH2O和过渡金属Co盐分别作为活性组分和助剂的前体,纳米级ZrO2作分散剂,所得催化剂为黑色固体粉末。1 2 催化剂性能测试F…  相似文献   

4.
采用共沉淀法制备了Ru-Zn催化剂,考察了二乙醇胺的添加对Ru-Zn催化剂上苯选择加氢制环己烯性能的影响,并采用N2物理吸附、透射电镜、X射线衍射、X射线荧光、傅里叶变换红外和程序升温还原等手段对催化剂进行了表征.结果表明,二乙醇胺可以与浆液中ZnSO4反应生成(Zn(OH)2)3(ZnSO4)(H2O)3和硫酸二乙醇胺盐.随着二乙醇胺用量的增加,化学吸附在催化剂表面的(Zn(OH)2)3(ZnSO4)(H2O)3增多,它与硫酸二乙醇胺盐的协同作用提高了Ru-Zn(4.9%)催化剂上苯选择加氢生成环己烯的选择性.当二乙醇胺用量为0.3g时,(Zn(OH)2)3(ZnSO4)(H2O)3在Ru-Zn(4.9%)催化剂加氢后样品的表面高度分散,反应性能最佳,循环使用第3次时苯转化率为84.3%,环己烯选择性和收率分别达75.5%和63.6%;使用至第4次时,反应25min时苯转化率和环己烯选择性仍可达75%以上,环己烯收率为58%以上.  相似文献   

5.
用共沉淀法制备了纳米Ru-Zn催化剂,考察了阿拉伯树胶修饰对苯选择加氢制环己烯催化剂性能的影响,并用X射线衍射(XRD)、透射电镜(TEM)、N2-物理吸附、X射线光电能谱(XPS)和X射线荧光光谱(XRF)等手段对催化剂进行了表征。结果表明,阿拉伯树胶的用量可以调变Ru-Zn催化剂的粒径。最高环己烯收率随粒径的增大呈火山型变化趋势。当阿拉伯树胶与RuCl3·xH2O的质量比为0.033时,Ru-Zn催化剂的最佳粒径为4.0 nm,最高环己烯收率达59.6%。且该催化剂具有良好的重复使用性能。  相似文献   

6.
采用化学还原法制备了一种新型高活性和高选择性苯选择加氢制环己烯的Ru-Fe-B/ZrO2纳米非晶态合金催化剂,并利用透射电镜、选区电子衍射、X射线衍射和N2物理吸附仪等手段对催化剂进行了表征.重点研究了Ru-Fe-B/ZrO2催化剂活性和选择性的可调变性,及还原剂NaBH4浓度和洗涤后滤液的pH值对其催化性能的影响.结果表明,在新型Ru-Fe-B/ZrO2催化剂上,当苯转化54%时,环己烯选择性高达80%,同时环己烯选择性随苯转化率升高而缓慢下降.向反应浆液中添加酸性或碱性物质可以调变催化剂的活性和选择性,同时催化剂制备工艺和性能具有很好的可重复性.Ru-Fe-B/ZrO2催化剂融合了纳米和非晶材料的特性,这是其对苯选择加氢制环己烯表现出高活性和高选择性的主要原因.  相似文献   

7.
苯在Ru-Zn/ZrO2表面部分加氢反应的理论和实验研究   总被引:1,自引:0,他引:1  
采用理论计算和实验方法研究了 Ru-Zn/ZrO2 催化剂上苯的部分加氢反应. 在还原阶段于水相中引入 Zn2+可使部分 Zn 以原子态进入 Ru 基催化剂. 理论计算表明, Zn 原子在 Ru 基催化剂中的存在同时抑制了苯和环己烯在催化剂表面的化学吸附, 尤其是环己烯在整个催化剂表面的吸附处于一定钝化状态, 这是环己烯选择性提高的重要原因. 实验结果表明, Zn 原子在催化剂中浓度的增加使得催化剂的加氢活性单调下降, 而环己烯选择性则单调上升. 实验和理论计算都证实了 Ru 基催化剂中最佳 Zn 含量的存在.  相似文献   

8.
液相法苯选择加氢制环己烯催化反应动力学方程   总被引:6,自引:0,他引:6  
 测定了Ru-M-B/ZrO2催化剂上选择加氢制环己烯反应过程中苯、环己烯及环己烷浓度随时间变化的c~t曲线,获得了苯选择加氢制环己烯反应中各步反应的级数和速率常数等动力学参数.结果给出,苯转化的反应级数对苯为1,对氢低压下为2,高压下为0;环己烯继续加氢生成环己烷的反应级数对环己烯为0,对氢低压下为2,高压下为0.在此基础上建立了苯选择加氢制环己烯各步反应的动力学方程,并对动力学方程进行了验证.  相似文献   

9.
共沉淀法制备了Ru-Zn催化剂,考察了反应修饰剂ZnSO_4和预处理对苯选择加氢制环己烯Ru-Zn催化剂性能的影响。结果表明,反应修饰剂ZnSO_4可以与Ru-Zn催化剂中助剂Zn O反应生成(Zn(OH)2)3(ZnSO_4)(H_2O)盐。随反应修饰剂ZnSO_4浓度增加,(Zn(OH)2)3(ZnSO_4)(H_2O)盐量逐渐增加,Ru-Zn催化剂活性逐渐降低,环己烯选择性逐渐升高。因为(Zn(OH)2)3(ZnSO_4)(H_2O)盐中的Zn2+可以使Ru变为有利环己烯生成的缺电子的Ruδ+物种,而且还可以占据不适宜环己烯生成的强Ru活性位。但当反应修饰剂ZnSO_4浓度高于0.41 mol·L-1后,继续增加ZnSO_4浓度,由于Zn2+水解浆液酸性太强,可以溶解部分(Zn(OH)2)3(ZnSO_4)(H_2O)盐,RuZn催化剂活性升高,环己烯选择性降低。环己烯选择性略微降低,是由于ZnSO_4溶液中大量的Zn2+可以与生成的环己烯形成配合物,稳定生成的环己烯,抑制环己烯再吸附到催化剂表面并加氢生成环己烷。在ZnSO_4最佳浓度0.61 mol·L-1下对Ru-Zn催化剂预处理15 h,Ru-Zn催化剂中助剂Zn O可以与ZnSO_4完全反应生成(Zn(OH)2)3(ZnSO_4)(H_2O)盐,在该催化剂上25 min苯转化68.2%时环己烯选择性和收率分别为80.2%和54.7%。而且该催化剂具有良好的稳定性和重复使用性能。  相似文献   

10.
采用多元醇还原法将2.4~5.4 nm范围内粒径均一、尺寸可控的Ru纳米粒子负载在ZrO2上,研究了Ru的粒径对Ru/ZrO2催化剂上苯部分加氢性能的影响.采用紫外-可见吸收光谱(UV-Vis)、N2物理吸附、H2化学吸附、H2-程序升温脱附(H2-TPD)、粉末X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等手段对催化剂进行了系统的表征.研究表明,用于还原的醇的种类及添加剂乙酸钠的浓度对Ru粒径有显著影响.在苯部分加氢反应中,Ru/ZrO2催化剂有明显的粒径效应.随着Ru粒径的增大,苯的转换频率(TOF)提高,环己烯初始选择性(S0)则呈火山型变化趋势,选择性最高时的Ru粒径为4.4 nm.1,2-丙二醇还原得到的Ru/ZrO2催化剂上S0及环己烯得率最高,分别可达82%和39%.结合催化剂的表征和加氢结果,讨论了Ru粒径影响苯部分加氢活性和选择性的原因.  相似文献   

11.
采用一种简便的水热法合成了一系列ZrO2,并采用沉积-沉淀法制得相应1.0%Au/ZrO2催化剂,在模拟甲醇重整气气氛下评价了它们的低温水煤气变换(WGS)反应催化性能.结果发现,于150oC水热合成的ZrO2负载的Au催化剂活性最佳,240oC反应时CO转化率达87%,明显高于相同反应条件下Au负载量较高的Au/Fe2O3,Au/CeO2及Au/CeZrO4催化剂.采用X射线衍射、原子吸收光谱、N2物理吸脱附及扫描电子显微镜等手段对样品进行了表征.结果表明,Au/ZrO2催化剂的总孔体积及平均孔径越大、圆形片状形貌越规整,其低温WGS催化活性就越高.  相似文献   

12.
共沉淀法制备了Ru-Zn催化剂,在ZrO_2作分散剂下考察了助剂前体ZnSO_4浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响.并用X-射线衍射(XRD)、X-射线荧光光谱(XRF)、N_2-物理吸附、透射电镜(TEM)和X-射线光电子能谱(XPS)等手段对催化剂进行了表征.结果表明,当ZnSO_4前体浓度低于0.10 mol/L时,Ru-Zn催化剂中Zn以ZnO形式存在,在加氢过程中ZnO可以与反应修饰剂ZnSO_4反应生成(Zn( OH)_2)_3(ZnSO_4)(H_2O)_3盐.继续增加ZnSO_4前体浓度,催化剂中Zn以ZnO和NaZn_4(SO_4)(Cl)(OH)_6·6H_2O盐存在,在加氢过程中ZnO和NaZn_4(SO_4)(Cl)(OH)_6·6H_2O盐可以与反应修饰剂ZnSO_4反应生成(Zn( OH)_2)_3(ZnSO_4)(H_2O)_5.(Zn( OH)_2)_3(ZnSO_4)(H_2O)_x(x=3或5)盐的Zn~(2+)可以转移金属Ru的部分电子.因此,随ZnSO_4前体浓度的增加,(Zn( OH)_2)_3(ZnSO_4)(H_2O)_x的量逐渐增加,金属Ru失电子越多,催化剂活性越低,环己烯选择性越高.0.08 mol/L ZnSO_4前体制备Ru-Zn催化剂给出了59.1%的环己烯收率,而且该催化剂具有良好的重复使用性能和稳定性.  相似文献   

13.
采用浸渍法制备了ZrO2-SiO2复合载体和Ni质量分数为6%的Ni/ZrO2-SiO2催化剂,考察了载体制备时浸渍溶液pH值、焙烧温度和催化剂制备时的焙烧温度对Ni/ZrO2-SiO2催化剂煤气甲烷化反应性能的影响。采用X射线衍射、程序升温还原和扫描电子显微镜等方法对催化剂进行了表征。结果表明,载体浸渍溶液pH值为8.0~9.0, 载体焙烧温度为550 ℃,催化剂焙烧温度为450 ℃时,Ni/ZrO2-SiO2催化剂在煤气甲烷化反应中显示了最优的催化性能,CO转化率100%,CO2转化率1.8%,CH4生成速率16.6 mmol/(h·g)。进一步表征发现,制备ZrO2-SiO2复合载体时,增大浸渍溶液的pH值有利于形成粒径较小的亚稳态四方晶相ZrO2,可见四方晶相ZrO2更有利于甲烷化反应;载体焙烧温度会影响到NiO粒径的大小和其在催化剂表面的分散,温度过高和过低都会导致NiO粒径大小的不适宜以及分散性的降低;催化剂焙烧温度过高则会导致NiO与载体间的相互作用减弱,NiO分散性降低。  相似文献   

14.
采用浸渍法制备了分别以活性炭(AC)和全硅MCM-41介孔分子筛负载的ZrO2催化剂,并对其进行了XRD、氮气吸附-脱附、X射线光电子能谱、差热-热重分析和吡啶吸附原位红外光谱等表征,考察了其在以异丙醇为氢源还原苯乙酮为α-苯乙醇的Meerwein-Ponndorf-Verley(MPV)反应中的催化活性,并与水合ZrO2进行对比.研究了载体对催化剂活性的影响.结果表明,ZrO2经MCM-41负载后,与载体发生强相互作用,可能形成Si—O—Zr键,ZrO2在载体表面呈高分散的无定形态,Zr—OH数目显著增加,L酸性增强,并形成B酸中心,使催化剂活性显著高于水合ZrO2;ZrO2负载在AC上后,与载体未发生强相互作用,ZrO2在载体表面未呈高分散状态,增加的Zr—OH数目相对较少,L酸性较弱,未形成B酸中心,催化活性未明显增加,但在较高焙烧温度(400~600℃)下,其仍能保持稳定的催化活性,这可归因于ZrO2/AC中AC孔道疏通及AC石墨层对苯乙酮上苯环的吸附作用,使活性位附近的反应底物浓度显著增大.  相似文献   

15.
The interaction between carbon dioxide and two zirconia catalysts-a Cu/ZrO2 catalyst containing 34% copper and a pure ZrO2 catalyst-was studied by pulse adsorption and temperature-programmed desorption methods. Kinetic modeling by nonlinear regression was applied to acquire information on the adsorption and desorption of CO2 relevant in the synthesis of methanol from carbon dioxide. A model that included three types of adsorption sites described well the experimental data for both Cu/ZrO2 and ZrO2. The model assumed first-order kinetics and a Freundlich-type logarithmic dependence of adsorption enthalpy on surface coverage. The parameters of the model were well identified and were in the physically meaningful range. The results indicate that, at 30 degrees C, on both catalysts, carbon dioxide adsorbs reversibly on one type of site and irreversibly on two other types of sites.  相似文献   

16.
在不同温度(673~1073K)下,于流动N2气中焙烧ZrO(OH)2醇(乙醇)凝胶,制备了不同尺寸的ZrO2-AN纳米晶(6~30nm).采用沉积-沉淀方法制备了相应的质量分数为0.7%的Au/ZrO2-AN催化剂.用XRD,XRF,TEM/HRTEM,EDS,N2吸附和1,3-丁二烯加氢反应对ZrO2-AN和Au/ZrO2-AN催化剂进行了表征.结果表明,在所有的Au/ZrO2-AN样品中,Au粒子的平均尺寸为4~5nm,ZrO2-AN的颗粒大小没有因为负载Au粒子而发生改变.1,3-丁二烯在Au/ZrO2-AN催化剂催化下能以100%的选择性进行加氢反应生成单烯烃.随着Au/ZrO2-AN催化剂中ZrO2-AN纳米晶尺寸的增加或“载体”焙烧温度的升高,1,3-丁二烯的转化率明显降低;1-丁烯的选择性先增加后减小,2-丁烯中反/顺异构体的摩尔比在0.5~1.0的范围内逐渐增大,TEM/HRTEM表征结果清楚地表明,Au/ZrO2-AN催化剂中Au粒子与ZrO2-AN颗粒接触界面/周边随ZrO2-AN颗粒尺寸的减小而明显增加,这很可能是含有更小尺寸ZrO2-AN纳米粒子的Au/ZrO2-AN催化剂具有更高的催化活性的重要原因.  相似文献   

17.
苯酚在Ln-ZrO_2催化剂上直接氧化制取邻苯二酚的研究   总被引:4,自引:0,他引:4  
以LnZrO2作为苯酚选择氧化催化剂,用过氧化氢氧化,得到邻苯二酚选择性高达857%的良好结果,添加稀土元素镧、钕的氧化锆催化剂与单纯的二氧化钛催化剂相比,邻苯二酚选择性分别提高了735%和678%。  相似文献   

18.
负载型氧化锆催化剂上甲醇脱氢制甲醛   总被引:6,自引:0,他引:6  
甲醇在无氧条件下脱氢,可以制得含水量极低的甲醛。在上述反应中,主要采用以硅胶为载体的负载型氧化物催化剂,其中以周期表ⅠB和ⅡB族金属,如铜、银或锌为主要组分。这些金属的氧化物在高温下易还原、烧结和表面积炭而使催化剂失活。添加P,S,Se或Te等组分作为助催化剂,在一定程度上可以改善催化性能。最近的发展倾向是采用非负载的碱金属盐作为催化剂,如Na_2CO_3,Na_2MoO_4,或Na_xLi_(1-x)AlO_2(0≤x≤1)。这类催化剂要求过高的反应温度,如高于650℃,甚至900℃条件下使用。  相似文献   

19.
煤层气是储量十分丰富的煤炭伴生资源,也是煤炭开采中最大的安全隐患之一,同时还是重要的温室气体.研究煤层气的高效、清洁资源化利用具有资源和环境双重意义.因此,世界主要产煤国均十分重视煤层气的开发和利用.煤层气的主要成分是甲烷,目前主要通过两种方式实现其资源化利用:(1)直接转化,主要通过氧化偶联、催化氧化官能团化或脱氢芳构化等途径将其转化为高碳烃、含氧化合物及芳烃等;(2)间接转化,甲烷首先经催化重整反应制取合成气,而后再经Fischer-Tropsch合成、甲醇化和氢甲酰化等过程来合成饱和烃、烯烃、甲醇及其他含氧化物.对于前者,由于热力学限制,反应收率很低,应用前景较差,而经由合成气这一平台产物的间接转化路线被认为是一条甲烷资源化利用颇具工业前景的转化路线.因此,甲烷催化重整制合成气备受关注.研究表明,贵金属具有较好的甲烷重整催化性能,但其储量有限、价格昂贵的内在缺陷不利于甲烷大规模转化和资源化利用.Ni基催化剂具有与贵金属可比的催化活性和选择性,且其储量丰富,价格低廉,因此在甲烷重整反应中备受青睐.但是,相对于贵金属,Ni基催化剂易于积碳和烧结失活,这已成为制约其大规模工业化应用的瓶颈.迄今,大量文献报道关注如何提高Ni基催化剂的催化稳定性.而载体形貌调控是调节负载型催化剂的有效途径.本文开展了用作载Ni催化剂的氧化锆载体的形貌调控研究,以期可以有效调节载Ni催化剂的物化性质,进而调控载Ni催化剂的甲烷重整催化性能.采用水热法成功制备了松球状和鹅卵石状的单斜相氧化锆载体,进一步负载镍,制备了载镍催化剂,用于甲烷重整制合成气反应.具有分级结构的松球状氧化锆载Ni催化剂(Ni/ZrO2-ipch)展示出比鹅卵石状氧化锆和常规氧化锆纳米粒子载Ni催化剂显著好的催化活性和稳定性.采用XRD、N2吸附、TEM、H2-TPR、CO化学吸附、CO2-TPD、XPS和TGA等手段研究了松球状氧化锆载Ni催化剂高催化活性和稳定性的原因和机制.发现,其较高的催化活性主要归因于高的Ni分散度、改善的可还原性、促进的氧流动性以及较多的碱性位和较强的碱性,这些物化性质依赖于氧化锆载体的独特形貌.分级结构的松球状氧化锆载Ni催化剂高的甲烷重整催化稳定性主要源于催化剂的高抗烧结、抗积碳性能.加强的金属载体效应和介孔限域效应可以阻止金属Ni的高温烧结,而优良的抗积碳稳定性主要源于催化剂良好的氧流动性、较多的碱性位、较强的碱性以及小的Ni粒子尺寸.鉴于分级结构松球状氧化锆载Ni催化剂高的催化活性和优良的抗积碳、抗烧结稳定性,该催化剂用于甲烷重整制合成气具有广阔前景.而所制备的分级结构松球状氧化锆由于具有独特的结构和优良的热稳定性,可以作为性能优良的载体用于其他反应,尤其对于高温转化过程可望表现出明显优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号