首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A semi-infinite cylindrical shell filled with a perfect incompressible liquid is considered. A vibrating rigid spherical segment placed on the shell axis excites the shell. The Laplace equation is solved under appropriate boundary conditions on the spherical, cylindrical, and flat surfaces bounding the liquid. Possibility is used to reexpand a spherical harmonic function in terms of a system of cylindrical harmonic functions and vice versa. The potential constructed is used to compute the shell deflections and the liquid pressure and velocity.  相似文献   

2.
A two-dimensional unsteady analysis of an elastic circular cylindrical shell that enters a thin layer of an ideal incompressible liquid is considered. The cylinder initially touches the liquid free surface at a single point and then penetrates the liquid layer at a constant vertical velocity. The problem is coupled because the liquid flow, the shape of the elastic shell and the geometry of the contact region between the body and the liquid must be determined simultaneously. The flow region is subdivided into four complementary regions that exhibit different properties: the region beneath the entering body surface, the jet root, the spray jet, and the outer region. A complete solution is obtained by matching the solutions within these four subdomains. The structural analysis is based on the normal-mode method. Strain-time histories of the inner surface of the cylinder are of particular interest. In the case of a very flexible shell three distinct regimes of the impact process were found. For a high impact velocity the lower part of the shell flattens and the shell does not enter the water. For a moderate impact velocity the shell reaches the bottom and an effect of “fluid capture” may occur. For a low impact velocity the shell penetrates the liquid, but the size of the contact region decreases before the shell reaches the bottom. This behaviour corresponds to exit or “reflection” of the shell from the water layer.  相似文献   

3.
A ring-stiffened spherical shell is submerged in an acoustic medium. The shell is thin and elastic. The acoustic medium is inviscid, irrotational and compressible. The center of mass of the shell is subjected to a translational acceleration which is an arbitrary function of time. The absolute displacements of the shell are expressed in terms of the relative displacements and the displacement of the base of the shell, base being defined as the rigid ring placed at the equator. The motion of the acoustic medium is governed by the wave equation. The transient response of the shell is investigated numerically. The results are compared with the results of the in-vacuo response. The effects of the plane wave approximation and the base velocity on the transient response of the shell are studied. The numerical results show that the plane wave approximation accurately predicts the response of the shell in the acoustic medium for short times after excitation. The displacements of the shell in fluid are larger than those in vacuo. But when the base of the shell is restrained from translating, the displacements in fluid are smaller than those in vacuo. Therefore, base translation has a very significant effect on the transient response of the shells submerged in an acoustic medium.  相似文献   

4.
The paper deals with the design of a shape of an element introducing the tangential load into the spherical shell in a way avoiding strong concentration of stresses in the shell. The shape of the attachment is obtained by solving two equations of compatibility of normal and tangential displacements of the shell and the attachment.  相似文献   

5.
This paper deals with the stress state of a box-shaped shell formed by two semi-infinite plates joined at a right angle. The plates are homogeneous but have different thicknesses. The shell is weakened by a finite rectilinear crack of unit length which reaches one edge of the shell. The orientation of the crack and the load on its edges are arbitrarily chosen. The problem is solved with the assumption that the thickness of the plates is small compared to the length of the crack, which allows an asymptotic formulation of the problem. The problem is reduced to a special type of Riemannian vector problem in which the stress-intensity factor allows matrix factorization in accordance with Khrapkov’s scheme. The asymptotes of the resulting solution and the stress-intensity factor are examined in relation to the thickness of the shell and the angle formed by the crack and the edge of the shell. Translated from Prikladnaya Mekalinika, Vol. 34, No. 12, pp. 48–54, December, 1998.  相似文献   

6.
为了评估舷侧液舱在大型撞击物下的抗碰撞特性,采用有限元法和简化理论法对典型球鼻艏在不同撞击速度和液舱水线工况下的舷侧外板和内板的抗破坏性能进行了分析。结果表明:舷侧水效应可以显著提升双舷侧结构的抗破坏性能,但是提升的幅度是有限的,而且水效应对外板的破坏作用力影响较小,对舷侧内板的破坏作用力影响较大;当球鼻艏撞击速度逐渐增高时,舷侧外板和内板的破坏作用力也逐渐增大,但增大速率逐渐降低,其中舷侧外板较舷侧内板的增大速率更快趋于平缓。对不同液舱水线的分析表明:舷侧液舱水线在受撞击的强框架以上时,对抗碰撞性能影响较小;当舷侧液舱水线在受撞击的强框架以下时,对舷侧外板的抗碰撞特性影响较小,但对舷侧内板的抗碰撞特性影响很大,并且随着球鼻艏碰撞速度的增高,不同水线位置对船舶抗碰撞性能的影响也随之增大。  相似文献   

7.
The exact analytical solution of a nonlinear boundary-value problem is used to study the effect of a generalized geometric parameter, which characterizes thickness and curvature, on the subcritical and postcritical deformation of a hinged infinite noncircular cylindrical shell. The load on the shell is nonuniformly distributed over its cross section. The deflection of the shell is plotted for various values of the geometric parameter  相似文献   

8.
A domain decomposition method is used to analyze the free and forced vibration characteristics of a spherical–cylindrical–spherical shell, based on Reissner–Naghdi's thin shell theory. The joined shell is divided into some cylindrical and spherical shell segments along the meridional (longitudinal) direction. Double mixed series, i.e., Fourier series and Chebyshev polynomials, are employed as the admissible displacement functions to obtain the discretized equation of motion for the joined shell. Numerical comparisons with the results derived by FEM and those available in the previous literature are made to validate the present method. Moreover, the effects of length-to-radius and radius-to-thickness ratios on the natural frequencies are also investigated.  相似文献   

9.
The stress–strain distribution in a composite deep cylindrical shell is analyzed. The shell is weakened by a circular opening and loaded by an axial force. The problem is solved by the variational difference method. The analysis is carried out for an orthotropic shell with low shear stiffness  相似文献   

10.
Hong-Liang Dai  Ting Dai 《Meccanica》2014,49(5):1069-1081
An analytic study for thermoelastic bending of a functionally graded material (FGM) cylindrical shell subjected to a uniform transverse mechanical load and non-uniform thermal loads is presented. Based on the classical linear shell theory, the equations with the radial deflection and horizontal displacement are derived out. An arbitrary material property of the FGM cylindrical shell is assumed to vary through the thickness of the cylindrical shell, and exact solution of the problem is obtained by using an analytic method. For the FGM cylindrical shell with fixed and simply supported boundary conditions, the effects of mechanical load, thermal load and the power law exponent on the deformation of the FGM cylindrical shell are analyzed and discussed.  相似文献   

11.
In this paper we construct and investigate the vortex structure consisting of a spherical vortex (vortex core) inside a spherical vortex layer (shell). A partial case of this structure is a spherical vortex with uniformly helical motion of the fluid within the core and the shell. The strengths of the helical flows in the core and the shell are generally different. The case of identical strengths is analyzed in detail. The streamline pattern is presented. The vortex velocity limit at which the vortex does not collapse is found. This proves to be less by a factor 1.7 than the analogous quantity for a vortex without a shell and 4 times lower than the maximum velocity of the Hill vortex.  相似文献   

12.
The free flexural vibration of a hung clamped-free cylindrical shell partially submerged in a fluid is investigated. The fluid is assumed to be inviscid and irrotational. The cylindrical shell is modelled by using the Rayleigh-Ritz method based on Sanders’ shell theory. The kinetic energy of the fluid is derived by solving the boundary-value problem related to the fluid motion. The natural vibration characteristics of the partially submerged cylindrical shell are discussed with respect to the added virtual mass approach. In this study, the nondimensionalized added virtual mass incremental factor for the partially submerged finite shell is derived. This factor can be readily used to estimate the change in the natural frequency of the shell due to the presence of a fluid.  相似文献   

13.
The paper studies the interaction of a spherical shock wave with an elastic circular cylindrical shell immersed in an infinite acoustic medium. The shell is assumed infinitely long. The wave source is quite close to the shell, causing deformation of just a small portion of the shell, which makes it possible to represent the solution by a double Fourier series. The method allows the exact determination of the hydrodynamic forces acting on the shell and analysis of its stress state. Some characteristic features of the stress state are described for different distances to the wave source. Formulas are proposed for establishing the safety conditions of the shell.Translated from Prikladnaya Mekhanika, Vol. 40, No. 9, pp. 94–104, September 2004.  相似文献   

14.
The results of mathematical simulation of a solid velocity damping by a soft skeleton fabric shell filled with air on impact on a hard surface are given. The equations of motion of a falling body and of the loading dynamics of membrane shells and the reinforcement rings in the fabric shell are considered together. Themathematical model and the numerical algorithm for solving the spatial problem of the dynamics of inflation of a shell with reinforcement rings are explicitly realized by the finite difference method. The boundary conditions are posed with regard to the contact of the shell elements in compression near the ring belts. The results of numerical experiments considering the interaction of the falling body with the deformable skeleton shell are discussed. The parameters influencing the process of the body braking on impact on a surface are determined.  相似文献   

15.
This paper deals with acoustic radiation by a thin elastic shell, closed by two perfectly rigid discs, immersed in water and filled with air. The system is driven by an internal acoustic source. The shell has a length L, is clamped along one of its boundaries and is freely supported along the other boundary. Using the infinite domain Green's function, the radiated acoustic pressure is modeled by a hybrid layer potential (linear combination with nonreal coefficient of a simple layer and a double layer). Using Green's tensor of the in vacuo shell operator, the shell displacement is expressed as the sum of the field generated by the acoustic pressures and that due to boundary sources. Finally, the Green's function of the interior Neumann problem is used to express the acoustic pressure inside the shell in terms of the acoustic source and shell normal displacement: this representation fails for any frequency equal to one of the resonance frequencies of the shell interior. To overcome this, a light fluid approximation, which is allowed because the inner fluid is a gas, is adopted. Around each resonance frequency, an inner approximation is defined which matches the classical outer approximation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
This paper considers the problem of equilibrium of a nonlinearly elastic spherical shell filled with a heavy fluid and resting on a smooth, absolutely rigid, flat surface. The weight of the shell is assumed to be negligible in comparison with the weight of the fluid filling it. The contact region with the supporting plane is one of the unknowns in the problem. Equilibrium equations for a membrane shell are obtained in an accurate nonlinear formulation. Stresses and strains of a shell made of a Mooney–Rivlin material are numerically investigated. The results are compared with calculation results for the case of inflation of a spherical shell ignoring the weight of the fluid filling. The effect of the fluid weight on shell strains and stresses is estimated.  相似文献   

17.
If the curvature of a shell changes under the action of an external force, then the shell can enter a strain state in which it acquires the shape of a plate. In the framework of physical and geometrical linearity, we suggest a solution of the axisymmetric problem about the stress-strain state of a shallow shell of revolution transformed into a circular plate.  相似文献   

18.
Summary The model considered is a collapsing or expanding spherical shell of incompressible fluid with constant total energy. The stability of its surfaces is studied by the usual perturbation method. There is a non-uniform acceleration through the shell which satisfies Taylor's criterion for stability at both surfaces. The inner surface however fails to satisfy Birkhoff's condition during collapse and is in general algebraically unstable. The stability of the outer surfaces is found to depend on the ratio of shell thickness to radius. For a thin shell the ratio of the initial perturbation amplitudes on the two surfaces is found to govern the motion at each surface, while for a thick shell, and for harmonics of order higher than the second, the two surfaces are independent, the inner surface being unstable during collapse and the outer surface unstable during expansion.  相似文献   

19.
The Bogolyubov-Mitropolsky method is used to find approximate periodic solutions to the system of nonlinear equations that describes the large-amplitude vibrations of cylindrical shells interacting with a fluid flow. Three quantitatively different cases are studied: (i) the shell is subject to hydrodynamic pressure and external periodical loading, (ii) the shell executes parametric vibrations due to the pulsation of the fluid velocity, and (iii) the shell experiences both forced and parametric vibrations. For each of these cases, the first-order amplitude-frequency characteristic is derived and stability criteria for stationary vibrations are established__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 4, pp. 75–84, April 2005.  相似文献   

20.
The free flexural vibration of a finite cylindrical shell in contact with external fluid is investigated. The fluid is assumed to be inviscid and irrotational. The cylindrical shell is modeled by using the Rayleigh–Ritz method based on the Donnell–Mushtari shell theory. The fluid is modeled based on the baffled shell model, which is applied to fluid–structure interaction problems. The kinetic energy of the fluid is derived by solving the boundary-value problem. The natural vibration characteristics of the submerged cylindrical shell are discussed with respect to the added virtual mass approach. In this study, the nondimensionalized added virtual mass incremental factor for the submerged finite shell is derived. This factor can be readily used to estimate the change in the natural frequency of the shell due to the presence of the external fluid. Numerical results showed the efficacy of the proposed method, and comparison with previous results showed the validity of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号