首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
气相爆轰波绕射流场显示研究   总被引:2,自引:1,他引:1  
采用基于红宝石激光器(波长694.3 nm)的纹影系统,对气相爆轰波绕射进行了初步的流场显示研究。采用单色激光和合适半带宽(15 nm)的滤光片,有效地消除了爆轰波自发光对流场显示的影响。合理设置激光器同步控制系统的触发延时,得到了序列的爆轰波阵面纹影照片。结果表明:图像清晰地显示了爆轰波阵面的诱导激波、横波及化学反应区。当爆轰波在左尖点处绕射,受稀疏波作用,诱导激波与化学反应区明显分离,导致爆轰波衰减为爆燃。分离的诱导激波和折皱的化学反应区在纹影图上清晰可见。诱导激波在垂直支管右壁面反射,诱导二次起爆。畸变爆轰波在水平和垂直支管中均发生马赫反射。提高初压,爆轰波受分叉口几何属性的影响减小,畸变爆轰波在水平和垂直支管下游较易恢复为自持爆轰波。  相似文献   

2.
可燃气体中激波聚焦的点火特性   总被引:4,自引:0,他引:4  
滕宏辉  王春  邓博  姜宗林 《力学学报》2007,39(2):171-180
数值模拟了二维平面激波从抛物面上反射在可燃气体中聚焦的过程,研究了形 成爆轰波的点火特性. 对理想化学当量比氢气/空气混合气体,在初始压强20kPa的条件下, 马赫数2.6-2.8的激波聚焦能产生两个点火区:第1个点火区是反射激波会聚引起的,第 2个点火区是由入射激波在抛物面上发生马赫反射引起的. 这种条件下流场中会出现爆燃转 爆轰,起爆点分别分布在管道壁面、抛物反射面和第2点火区附近. 起爆机理分别为激波管 道壁面反射、点火诱导激波的抛物面反射和点火诱导的激波与第2点火区产生的爆燃波的相 互作用. 不同的点火和起爆过程导致了不同的流场波系结构,同时影响了爆轰波传播的波动 力学过程.  相似文献   

3.
气相爆轰在T形管中传播新现象的实验研究   总被引:8,自引:0,他引:8  
对2H2/O2/Ar系统爆轰波在T形管(截面为40mm×40mm)中传播现象进行了实验研究.用烟迹片记录了T形管中爆轰波的胞格结构,用压电传感器记录了分叉口附近指定点压力时间曲线,得到了爆轰波在分叉口附近的平均速度和胞格图案演变.结果表明:初压P0≥2.67kPa,在水平和垂直支管下游区域(距离分叉口约3.5—6倍方管截面边长),分叉口影响消失,爆轰波恢复稳定,且强度基本保持不变.在分叉口绕射过程中,爆轰波在膨胀区中衰减,诱导激波阵面弯曲.两个支管中发生马赫反射,三波点迹线清晰可见.该传播特性是爆轰波的诱导激波和横波共同作用的结果.分叉口附近的胞格结构先消失再恢复,在无胞格和平衡胞格之间的区域存在细密胞格的过渡区,表征了在诱导激波与化学反应阵面分离后的区域中出现二次点火.P0=2.00kPa,水平支管中稳定自持爆轰能重建,垂直支管中爆轰熄灭.P0<2.00kPa,分叉口上游已不能形成稳定爆轰.还对胞格结构中的几个特征参数进行了测量,并初步分析了P0对这些参数的影响.  相似文献   

4.
混合爆轰现象既包含气相反应又包含两相反应,具有复杂性和多样性.爆轰推进技术在新领域的突破性应用与发展,依赖对爆轰现象的深刻认识.文章采用卧式爆轰管开展铝粉/氢气/空气混合爆轰试验,将μm和nm量级的球形铝粉与当量比的氢气和空气通过扬尘充分混合,在长13 m和直径224 mm的管内直接起爆混合物.试验中观测到不同种类的混合爆轰波,包括双波面和单波面结构.通过对爆轰燃气中铝粉点火燃烧特性的分析,阐明了两相反应对铝粉/氢气/空气混合爆轰波结构的直接影响.粒径100 nm和1μm时,混合爆轰呈现单波面结构,对比气相爆轰爆速和压力峰值都有增加,铝粉点火释热开始于声速面之前.粒径20μm和40μm铝粉点火较慢,混合爆轰呈现出双波面结构,气相反应释热支持第一道波,而铝粉燃烧支持第二道波.粒径10μm时,测得爆轰波压力曲线是单波峰,峰值压力有大幅提高,但是爆速并没有增加.其本质是两波面距离很近的双波面结构,由于传感器空间辨识能力的不足而无法在压力曲线中区分.混合爆轰试验结果充分解释了铝粉/氢气/空气混合爆轰现象,反映了铝粉在复杂条件下的燃烧特性,并且明确了铝粉的点火燃烧特性对混合爆轰现象的影响机理.  相似文献   

5.
本文实验研究了丙烷、氧气和空气的预混气体非稳定爆轰波在具有声学吸收壁的直角三通弯管中传播特性,分析了声学吸收材料厚度对非稳定爆轰波传播特性的影响.实验结果表明,在直角三通弯管中安装声学吸收材料对气体非稳定爆轰波有明显的衰减作用,在弯管前后非稳定爆轰波的传播速度和压力都有很大程度的减小.而且随着声学吸收材料厚度的增加,气体非稳定爆轰波强度衰减幅度增大.这一实验结论对工业安全具有重要的参考价值.  相似文献   

6.
预爆管技术被广泛地应用在爆轰波发动机的起爆过程中,但是在超音速来流中基于预爆管技术起始爆轰波的研究并未被广泛地开展。基于此,本文中数值研究了横向超音速来流对半自由空间内爆轰波的衍射和自发二次起爆、及管道内的衍射和壁面反射二次起爆两种现象的影响。数值模拟的控制方程为二维欧拉方程,空间上使用五阶WENO格式进行数值离散,采用带有诱导步的两步链分支化学反应模型。所模拟的爆轰波具有规则的胞格结构,对应于用惰性气体高度稀释过的可爆混合物中形成的爆轰波。结果表明:在半自由空间内,在本文所模拟的几何尺寸下,爆轰波并未成功发生二次起爆现象,但是爆轰波的自持传播距离随着横向超音速来流强度的增强而增加。在核心的三角形流动区域外,波面诱导产生了更多的横波结构;在管道内,横向的超音速来流在逆流侧对出口气流产生了压缩作用,能有效提高波面压力,因此反射后的激波压力也比较高。在同样的几何尺寸下,爆轰波在静止和超音速(Ma=2.0)气流中分别出现了二次起爆失败和成功两种现象,这是由于在超音速来流中化学反应面的褶皱诱导产生了横波结构,横波与管壁以及其他横波之间的碰撞提高了前导激波的强度,并最终促进了爆轰波在超声速流主管道内的成功起始。  相似文献   

7.
用环形激波聚焦实现爆轰波直接起爆的数值模拟   总被引:5,自引:3,他引:5  
利用基元反应模型和有限体积法对环形激波在可燃气体中聚焦实现爆轰波直接起爆进行了数值模拟。研究结果表明,标准状态下的氢气-空气混合气体在马赫数为3.1以上的环形激波聚焦产生的高温高压区作用下会诱发可燃气体的直接起爆形成爆轰波,爆轰波与激波和接触间断相互作用产生了复杂的波系结构;爆轰波爆点位置在对称轴上并不是固定的点,而是随着初始激波马赫数的变化而发生移动;可燃气体初始温度和压力对起爆临界马赫数都有影响,但是初始温度的影响大得多。  相似文献   

8.
液态燃料对连续旋转爆轰发动机爆轰特性的影响   总被引:3,自引:0,他引:3  
为了研究液态燃料对连续旋转爆轰发动机爆轰特性的影响,采用CE/SE方法对以汽油/富氧空气为燃料的CRDE进行数值模拟,分析了不同液滴半径、当量比对爆轰性能参数的影响。计算结果表明:随着液滴半径增大,爆轰压力峰值、温度峰值以及爆轰波速度均降低,且压力峰值与温度峰值在爆轰波传播过程中出现不稳定现象;当增大到70 μm时,爆轰波将无法成功起爆。随着当量比的增大,CRDE爆轰波速度及平均推力增大,爆轰压力、温度以及气相周向速度的峰值均先增大后减小。在当量比1.1附近,爆轰压力与温度的峰值出现极大值;而气相周向速度峰值的极大值出现在当量比0.9附近。基于燃料的比冲随着当量比增大而减小。  相似文献   

9.
建立圆管及环形管道系统研究临近极限下爆轰波在管道内传播失效机理。选用C2H2+2.5O2+70%Ar气体,采用光纤探针测量爆轰波在管道内传播速度,用烟迹法记录管道内爆轰波胞格结构。结果表明:初始压力远大于爆轰极限压力时,爆轰波在管道内以稳定速度传播;随着初始压力的减小,爆轰波速度逐渐降低;当初始压力一定时,爆轰波速度随着管道尺寸的减小而逐渐减小;当初始压力达到临界压力时,爆轰波在进入到管道内后其速度会逐渐衰减直至爆轰波完全失效。对于不同几何尺寸的圆管与环管,通过引入无量纲参数d/λ及w /λ(d为圆管管径,w为环管间距,λ为爆轰胞格尺寸)得出,爆轰波在管道内传播的临界圆管直径为环形间距的2倍,与理论模型结果相吻合,验证了稳态气体基于爆轰波波面曲率的失效机理。  相似文献   

10.
通过采用压力传感器和烟灰板两种测试设备,开展了常温常压下氢气/丙烷和空气混合气体爆轰性能的实验研究。实验过程中观察到自持爆轰波,爆轰速度比值在0.99~1之间,爆轰压力比值在0.8~1.2之间。爆轰胞格尺寸在10~50 mm范围内,建立了爆轰胞格尺寸和化学诱导长度的关系式。随着丙烷不断添加,爆轰速度减小,而爆轰压力和胞格尺寸增加。这种变化趋势起初较快,而后变缓。因为起初氢气摩尔分数较大,混合气体趋向于氢气/空气的爆轰性能;而后因丙烷摩尔质量较大,丙烷逐渐起主要作用,混合气体表现出丙烷/空气的爆轰性能。  相似文献   

11.
This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman–Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.  相似文献   

12.
Diffraction and re-initiation of detonations behind a backward-facing step   总被引:5,自引:0,他引:5  
Diffraction phenomena of gaseous detonation waves behind a backward-facing step in a tube are observed by using high-speed schlieren photography and soot-track records as well as by pressure measurements on the sidewall. Mixtures are stoichiometric oxyhydrogen and those diluted by argon at sub-atmospheric pressures. Three types of phenomena are observed, that is, continuous propagation of detonation, re-initiation after a temporal extinction of detonation and complete extinction of detonation. The continuous propagation means that the diffracted wave does not affect the main propagation although reflected shock waves from the bottom surface of the tube may affect it. The re-initiation occurs at a wall surface of the tube behind a reflected shock wave after the main detonation wave has been extinguished. Positions and conditions of the re-initiation are discussed. The complete extinction is defined as disappearance of detonation cells behind the step within a certain length of the tube. Cases exist where an ignition occurs after several reflections off the bottom and top surface of the tube.  相似文献   

13.
Behavior of detonation waves at low pressures   总被引:1,自引:0,他引:1  
With respect to stability of gaseous detonations, unsteady behavior of galloping detonations and re-initiation process of hydrogen-oxygen mixtures are studied using a detonation tube of 14 m in length and 45 mm i.d. The arrival of the shock wave and the reaction front is detected individually by a double probe combining of a pressure and an ion probe. The experimental results show that there are two different types of the re-initiation mechanism. One is essentially the same as that of deflagration to detonation transition in the sense that a shock wave generated by flame acceleration causes a local explosion. From calculated values of ignition delay behind the shock wave decoupled from the reaction front, the other is found to be closely related with spontaneous ignition. In this case, the fundamental propagation mode shows a spinning detonation. Received 10 March 1997 / Accepted 8 June 1997  相似文献   

14.
针对石化装置罐区大口径、长距离管道内火焰传播缺乏系统研究的问题,设计搭建了DN50~DN500工业尺度管道火焰传播实验装置,并开展了丙烷/空气、乙烯/空气等可燃气体在不同管径下的实验研究。实验结果表明:可燃气体积分数对火焰传播及爆轰有一定影响,当接近化学计量浓度时,爆轰加速距离更短,更易形成稳态爆轰,而当可燃气混合气为贫燃或富燃状况时,爆轰加速距离则会增长;火焰爆轰传播速度、爆轰压力与管道管径基本无关,受可燃气种类影响更大;对应体积分数为6.6%的乙烯/空气和体积分数为4.2%的丙烷/空气混合气体,爆轰压力分别是初始压力的15.17和14.47倍,DN150以下管径内的爆轰压力远高于ISO16852标准给出的参考值。罐区连通管道阻火器选型安装时,应结合安装位置选用合适的阻火器。  相似文献   

15.
The two-dimensional, time-dependent, reactive Navier–Stokes equations including the effects of viscosity, thermal conduction and molecular diffusion were solved to reveal the wave evolution and chemical dynamics involved in the re-initiation process. The computation was performed for hydrogen–oxygen–argon mixtures at the low initial pressure (8.00 kPa), using detailed chemical reaction model. The results show that, the decoupled leading shock reflects on the right wall of the vertical branch. High temperature and pressure behind the reflected shock induce the generation of hot spots and local explosion. Therefore, the re-initiation of gaseous detonation occurs. In the re-initiation area, there exist very high OH concentration and no H 2 concentration. However, in front of reflected shock, there exist relatively high H 2 concentration and no OH radicals. Additionally, the shock–flame interaction induces RM instability. This results in the fast mixing between hot reacted gas mixture and the relatively cold unreacted gas mixture and accelerates the chemical reactions. However, the shock–flame interaction contributes much less to the re-initiation, in contrast with shock reflection. The transition of leading shock from regular reflection to Mach reflection happens during the re-initiation. The computed evolution of wave structures involved in the re-initiation is qualitatively agreeable with that from the experimental schlieren images.   相似文献   

16.
When a detonation wave emerges from a tube into unconfined space filled with a gas mixture, detonation wave diffraction occurs due to abrupt changes in the cross-sectional area. In the present study, we focused on the local explosion in reinitiation and propagation of a transverse detonation wave by performing comprehensive and direct observation with high time resolution visualization in a two-dimensional rectangular channel. Using the visualization methods of shadowgraph and multi-frame, short-time, open-shutter photography, we determined where the wall reflection point is generated, and also determined where the bright point is originated by the local explosion, and investigated the effects of the deviation angle and initial pressure of the gas mixture. We found that the reinitiation of detonation had two modes that were determined by the deviation angle of the channel. If the deviation angle was less than or equal to 30\(^{\circ }\), the local explosion of reinitiation might occur in the vicinity of the channel wall, and if the deviation angle was greater than or equal to 60\(^{\circ }\), the local explosion might originate on the upper side of the tube exit. With a deviation angle greater than 60\(^{\circ }\), the position of the wall reflection point depended on the cell width, so the radial distance of the wall reflection point from the apex of the tube exit was about 12 times the cell width. Similarly, the bright point (local explosion point) was located a distance of about 11 times the cell width from the apex of the tube exit, with a circumferential angle of 48\(^{\circ }\).  相似文献   

17.
为了研究T型分支结构对管道内油气混合物爆炸强度的影响规律,测试了不同初始体积分数条件下直管和具有T型分支管中爆炸波超压值,并利用有机玻璃透明管道对火焰传播规律进行了可视化研究。得到以下结论:(1)T型分支管道对油气爆炸有强化作用,在油气体积分数为1.2%至1.6%范围内表现最明显; (2)T型分支管道对油气爆炸的强化作用受管道横截面突扩和障碍物扰动以及波的反射、绕射三方面的影响; (3)火焰经过分支管道时,火焰阵面发生极大的扭曲,火焰表面积显著增大,燃烧速率增大,增强了热量和活性物质的输运速率,提高了爆炸波的强度; (4)在T型分支管道附近, 油气爆炸的压力突变增强, 是由压力波反射、绕射引起的温升效应和压力波引起湍流强度增强共同导致。  相似文献   

18.
通过在粉状乳化炸药中添加不同比例的密度调节剂,配制了爆速范围为1 450~2 550 m/s的低爆速炸药;采用该爆速炸药进行了铝/不锈钢复合管爆炸焊接实验,结合最小碰撞速度理论,对实验结果及其界面微观结构和结合强度进行了测试和分析,确定该复合管爆炸焊接的合适爆速约为1 950~2 150 m/s,其结合质量能够满足后续加工要求;同时发现界面由介于直线与波形之间的波状形态组成,且呈现不太规则的扁平波状结合,经分析,炸药爆速、复合管的爆炸焊接环境和爆炸产物飞散条件对界面结合波形及熔化层厚度有很大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号